1) Huang C-L. The transient receptor potential superfamily of ion channels. J Am Soc Nephrol. 2004; 15: 1690-9
|
|
|
2) Geng L, Segal Y, Peissel B, et al. Identification and localization of polycystin, the PKD1 gene product. J Clin Invest. 1996; 98: 2674-82
|
|
|
3) Roitbak T, Ward CJ, Harris PC, et al. A polycystin-1 multiprotein complex is disrupted in polycystic kidney disease cells. Mol Biol Cell. 2004; 15: 1334-46
|
|
|
4) Vassilwv PM, Guo L, Chen X-Z, et al. Polycystin-2 is a novel cation channel implicated in defective intracellular Ca2+ homeostasis in polycystic kidney disease. Biochem Biophys Res Commun. 2001; 282: 341-50
|
|
|
5) Cuozzo FP, Mishra S, Jiang J, et al. Overexpression of kidney phosphatidylinositol 4-kinaseβ and phospholipase Cγ1 proteins in two rodent models of polycystic kidney disease. Biochim Biophys Acta. 2002; 1587: 99-106
|
|
|
6) Scheffers MS, Le H, Bent P, et al. Distinct subcellular expression of endogenous polycystin-2 in the plasma membrane and Golgi apparatus of MDCK cell. Hum Mol Genet. 2002; 11: 59-67
|
|
|
7) Luo Y, Vassilev PM, Li X, et al. Native Polycystin 2 functions as a plasma membrane Ca2+- permeable cation channel in renal epithelia. Am Soc Microbiol. 2003; 23: 2600-7
|
|
|
8) Hanaoka K, Qian F, Boletta A, et al. Co-assembly of polycystin-1 and-2 produces unique cation-permeable currents. Nature. 2000; 408: 990- 4
|
|
|
9) Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechano-senseation in the primary cilium of kidney cells. Nat Genet. 2003; 33: 129-37
|
|
|
10) Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 2002; 13: 2508-16
|
|
|
11) Lin SY, Corey DP. TRP channels in mechanosensation. Curr Opin Neurobiol. 2005; 15: 350-57
|
|
|
12) Nauli SM, Rossetti S, Kolb RJ, et al. Loss of polycystin-1 in human cyst- lining epithelia leads to ciliary dysfunction. J Am Soc Nephrol. 2006; 17: 1015-25
|
|
|
13) Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol. 2001; 184: 71-9
|
|
|
14) Koulen P, Cai L, Maeda Y, et al. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 2002; 4: 191-7
|
|
|
15) Cantiello HF. Regulation of calcium signaling by polycystin-2. Am J Physiol Renal Physiol. 2004; 286: F1012-29
|
|
|
16) Yamaguchi T, Hempson S, Reif GA, et al. Calcium restores a normal proliferation phenotype in human polycystic kidney diseease epithelial cells. J Am Soc Nephrol. 2006; 17: 178-87
|
|
|
17) Yoder BK, Tousson A, Millican L, et al. Polaris a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Renal Physiol. 2002; 282: F541-52
|
|
|
18) Hou X, Mrug M, Yoder BK, et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J Clin Invest. 2002; 109: 533-40
|
|
|
19) Lin F, Hiesberger T, Cordes K, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. PNAS. 2003; 100: 5286-91
|
|
|
20) Nauli SM, Zhou J. Polycystins and mechanosensation in renal and nodal cilia. BioEssays. 2004; 26: 844-56
|
|
|
21) Qian Q, Hunter LW, Li M, et al. Pkd2 haploinsufficiency alters intracellular calcium regulation in vascular smooth muscle cells. Hum Mol Genet. 2003; 12: 1875-80
|
|
|
22) Yamaguchi T, Pelling JC, Ramaswamy NT, et al. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int. 2000; 57: 1460-71
|
|
|
23) Hanaoka K, Guggino WB. cAMP Regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J Am Soc Nephrol. 2000; 11: 1179-87
|
|
|
24) Belibi FA, Relf G, Wallace DP, et al. Cyclic AMP promotes growth and secretion in human polycystic kidney epithelial cells. Kidney Int. 2004; 66: 964-73
|
|
|
25) Yamaguchi T, Nagao S, Kasahara M, et al. Renal accumulation and excretion of cyclic adenosine monophoshate in a murine model of slowly progressive polycystic kidney disease. Am J Kidney Dis. 1997; 30: 703-9
|
|
|
26) Yamaguchi T, Nagano S, Wallace DP, et al. Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kideneys. Kidney Int. 2003; 63: 1983-94
|
|
|
27) Nagao S, Yamaguchi T, Kusaka M, et al. Renal activation of extracellular signal- regulated kinase in rats with autosomal- dominant polycystic kidney disease. Kidney Int. 2003; 63: 427-37
|
|
|
28) Sutters M, Yamaguchi T, Master RL, et al. Polycystin-1 transforms the camp growth-responsive phenotype of M-1 cells. Kidney Int. 2001; 60: 484-94
|
|
|
29) Parker E, Newby L, Sharpe CC, et al. Hyperproliferation of PKD1 cystic cells is induced by insulin- like growth factor- 1 activation of the Ras/ Raf signaling system. Kidney Int. 2007; 72: 157-65
|
|
|
30) Yamaguchi T, Wallace DP, Magenheimer BS, et al. Calcium restriction allows cAMP activation of the B-Raf / ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem. 2004; 279: 40419-30
|
|
|
31) Kip SN, Hunter LW, Ren Q, et al. [Ca2+]i reduction increases cellular proliferation and apoptosis in vascular smooth muscle cells relevance to the ADPKD phenotype. Circ Res. 2005; 96: 873-80
|
|
|
32) Putnam WC, Swenson SM, Reif GA, et al. Identification of a forskolin-like molecule in human renal cysts. J Am Soc Nephrol. 2007; 18: 934-43
|
|
|
33) Davidow CJ, Maser RL, Lorraine AR, et al. The cystic fibrosis transmembrane conductance regulator mediates transepithelial fluid secretion by human autosomal dominant polycystic kidney disease epithelium in vitro. Kidney Int. 1996; 50: 208-18
|
|
|
34) Hanaoka K, Devuyst O, Schwiebert EM, et al. A role for CFTR in human autosomal dominant polycystic kidney disease. Am J Physiol. 1996; 270: C389-99
|
|
|
35) Gattone VH, Wang X, Harris PC. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003; 9: 1323-6
|
|
|
36) Wang X, Wu Y, Ward CJ, et al. Vasopressin directly regulates cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008; 19: 102- 8
|
|
|
37) Wang X, GattoneⅡ V, Harris PC, et al. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol. 2005; 16: 846-51
|
|
|
38) Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for- hyponatremia. N Engl J Med. 2006; 355: 2099- 110
|
|
|
39) Hline SS, Pham PTT, Pham PTT, et al. Conivaptan: a step forward in the treatment of hyponatremia? Ther Clin Risk Manag. 2008; 4: 315-26
|
|
|
40) Gheorghiade M, Niazi I, Ouyang J, et al. Vasopressin V2- receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation. 2003; 107: 2690-6
|
|
|
41) Gheorghiade M, Gattis WA, O'Connor CM, et al. Effects of tolvaptan, a vasopressin antagonist, in patientshospitalized with worsening heart failure: a randomized controlled trial. JAMA. 2004; 291: 1963-71
|
|
|
42) Reubi JC, Horisberger U, Studer UE, et al. Human kidney as target for somatostatin: High affinity receptors in tubules and vasa recta. J Clin Endocrinol Metab. 1993; 77: 1323-8
|
|
|
43) Trendle MC, Moertel CG, Kvols LK. Incidence and morbidity of cholelithiasis in patients receiving chronic octreotide for metastatic carcinoid and malignant islet cell tumors. Cancer. 1997; 79: 830-4
|
|
|
44) Ruggenenti P, Remuzzi A, Ondei P, et al. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int. 2005; 68: 206-16
|
|
|
45) Masyuk TV, Masyuk AI, Torres VE, et al. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3', 5'-cyclic monophosphate. Gastroenterology. 2007; 132: 1104-6
|
|
|
46) Li X, Luo Y, Starremans PG, et al. Polycystin- 1 and polycystin- 2 regulate the cell cycle through the helix- loop - helix Inhibitor Id2. Nature Cell Biol. 2005; 7: 1202-12
|
|
|
47) Aukema H, Housini I, Rawling J. Dietary soy protein effects on disease and IGF-I in male and female Han: SPRD-cy rats. Kidney Int. 2001; 59: 52-61
|
|
|
48) Nakamura T, Ebihara I, Nagaoka I, et al. Growth factor gene expression in kidney of murine polycystic kidney disease. J Am Soc Nephrol. 1993; 3: 1378-86
|
|
|
49) Bello-Reuss E. Inhibition of tubule- cell proliferation to prevent cyst formation: a new avenue to treat ADPKD? Kidney Int. 2007; 72: 135- 7
|
|
|
50) Kugoh H, Kleymenova E, Walker CL. Retention of membrane-localized β-catenin in cells lacking functional polycystin-1 and tuberin. Mol Carcinog. 2002; 33: 131-6
|
|
|
51) Mostov KE. mTOR is out of control in polycystic kidney disease. Proc Natl Acad Sci. 2006; 103: 5247-8
|
|
|
52) Distefano G, Boca M, Rowe I, et al. Polycystin-1 regulates extracellular signal-regulated kinase-dependent phosphorylation of tuberin to control cell size through mTOR and its downstream effectors S6K and 4EBP1. Mol Cell Biol. 2009; 29: 2359-71
|
|
|
53) Shillingford JM, Murcia MS, Larson CH, et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci. 2006; 103: 5466-71
|
|
|
54) Tao Y, Schrier RW, Edelstein CL. Rapamycin markedly slows disease progression in a rat model of polycystic kidney disease. J Am Soc Nephrol. 2005; 16: 46-51
|
|
|
55) Wahl PR, Serra AL, Hir ML, et al. Inhibition of mTOR with sirolimus slows disease progression in Han: SPRD rats with autosomal dominant polycystic kidney disease(ADPKD). Nephrol Dial Transplant. 2006; 21: 598-604
|
|
|
56) Wu M, Wahl PR, Hir ML, et al. Everolimus retards cyst growth and preserves kidney function in a rodent model for polycystic kidney disease. Kideny Blood Press Res. 2007; 30: 253-9
|
|
|
57) Qian Q, Du H, King BF, et al. Sirolimus reduces polycystic liver volume in ADPKD patients. J Am Soc Nephrol. 2008; 19: 631-8
|
|
|
58) Bissler JJ, McCormack FX, Young LR, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med. 2008; 358: 140-51
|
|
|
59) Bhunia AK, Piontek K, Boletta A, et al. PKD1 induces p21waf1 and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell. 2002; 109: 157-68
|
|
|
60) Park JY, Schutzer WE, Lindsley JN, et al. P21 is decreased in polycystic kidney disease and leads to increased epithelial cell cycle progression: roscovitine augments p21 levels. BMC Nephrol. 2007; 8: 12
|
|
|
61) Bukanov NO, Smith LA, Klinger KW, et al. Long-lasting arrest of murine polycystic kidney disease with CDK inhibitor roscovitine. Nature. 2006; 444: 949-52
|
|
|
62) Ibraghimov-Beskrovnaya O. Targeting dysregulated cell cycle and apoptosis for polycystic kidney. Cell Cycle. 2007; 6: 776-9
|
|
|
63) Benson C, White J, De Bono J, et al. A phase l trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R- Roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer. 2007; 96: 29-37
|
|
|
64) Munemura C, Uemaso J, Kawasaki H. Epidermal growth factor and endothelin in cyst fluid from autosomal dominant polycystic disease case. Am J Kidney Dis. 1994; 24: 561-8
|
|
|
65) Hocher B, Zart R, Schwarz A, et al. Renal endothelin system in polycystic kidney disease. J Am Soc Nephrol. 1998; 9: 1169-77
|
|
|
66) Hocher B, Kalk P, Slowinski T, et al. ETA receptor blockade induces tubular cell proliferation and cyst growth in rats with polycystic kidney disease. J Am Soc Nephrol. 2003; 14: 367-76
|
|
|
67) van Dijk MA, Kamper AM, van Veen S, et al. Effect of simvastatin in autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2001; 16: 2152-7
|
|
|
68) Namli S, Oflaz H, Turgut F, et al. Improvement of endothelial dysfunction with simvastatin in patients with autosomal dominant polycystic kidney disease. Renal Failure. 2007; 29: 55-9
|
|
|
69) Ogborn MR, Bankovic-Calic N, Shoesmith C, et al. Soy protein modification of rat polycystic kidney disease. Am J Physiol. 1998; 274: F541-9
|
|
|
70) Ogborn MR, Nitschmann E, Weiler HA, et al. Modification of polycystic kidney disease and fatty acid status by soy protein diet. Kidney Int. 2000; 57: 159-66
|
|
|
71) Ogborn MR, Nitschmann E, Weiler H, et al. Flaxseed ameliorates interstitial nephritis in rat polycystic kidney disease. Kidney Int. 1999; 55: 417-23
|
|
|
72) Higashihara E, Nutahara K, Horie S, et al. The effect of eicospentaenoic acid on renal function and volume in paitients with ADPKD. Nephrol Dial Transplant. 2008; 23: 2847- 52
|
|
|
73) Sutters M, Germino GG. Autosomal dominant polycystic kidney disease: Molecular genetics and pathophysiology. J Lab Clin Med. 2003; 141: 91-101
|
|
|
74) Kierszenbaum AL. Polycystins: What polycstic kidney disease tells us about sperm. Mol Reprod Dev. 2004; 67: 385-8
|
|
|
75) Smyth BJ, Snyder RW, Balkovetz DF, et al. Recent advances in the cell biology of polycystic kidney disease. Cell Biol Polycystic Kidney Dis. 2003; 231: 51- 89
|
|
|
76) Anyatonwu GI, Ehrlich BE. Calcium signaling and polycystin-2. BBRC. 2004; 322: 1364-73
|
|
|