1) Herberth J, Monier-Faugere MC, Mawad HW, et al. The five most commonly used intact parathyroid hormone assays are useful for screening but not for diagnosing bone turnover abnormality in CKD-5 patients. Clin Nephrol. 2009; 72: 5-15
|
|
|
2) Barretto FC, Barretto DV, Moyses RM, et al. K/DOQI-recommended intact PTH levels do not prevent low-turnover bone disease in hemodialysis patients. Kidney Int. 2008; 73: 771-7
|
|
|
3) Joly D, Drüeke TB, Alberti C, et al. Variation in serum and plasma PTH levels in second-generation assays in hemodialysis patients: a cross-sectional study. Am J Kidney Dis. 2008; 51: 987-95
|
|
|
4) Wesseling-Perry K, Pereira RC, Wang H, et al. Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Metab. 2009; 94: 511-7
|
|
|
5) Adragao T, Herberth J, Monier-Faugere MC, et al. Femoral mineral density reflects histologically determined cortical bone volume in hemodialysis patients. Osteoporos Int. 2009; [Epub ahead of print]
|
|
|
6) Adragao T, Herberth J, Monier-Faugere MC, et al. Low bone volume-a risk factor for coronary calcifications. C J Am Soc Nephrol. 2009; 4: 450-5
|
|
|
7) Yajima A, Mitobe M, Mouri M, et al. Relationship between minimodeling and aortic calcification in patients with secondary hyperparathyroidism. J Am Soc Nephrol. 2007; 18(Abstract Issue): 87A
|
|
|
8) Moe SM, Chen NX, Seifert MK, et al. A rat model of chronic kidney disease-mineral bone disorder. Kidney Int. 2009; 75: 176-84
|
|
|
9) Otto SM. Histomorphometric measurements of bone turnover, mineralization, and volume. Clin J Am Soc Nephrol. 2008; 3: S151-S156
|
|
|
10) Moe SM, Drüeke TB, Block GA, et al. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Chapter 3. 1: Diagnosis of CKD-MBD: biochemical abnormalities. Kidney Int. 2009; 76(Suppl 113): S22-43
|
|
|
11) Bonewald LF. Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci. 2007; 1116: 281-90 (Review)
|
|
|
12) Geng W, Hill K, Zerwekh JE, et al. Inhibition of osteoclast formation and function by bicarbonate: role of soluble adenyl cyclase. J Cell Physiol. 2009; 220: 332-4
|
|
|
13) Nii-kono T, Iwasaki Y, Uchida M, et al. Indoxyl sulfate induces skeletal resistance to parathyroid hormone in cultured osteoblastic cells. Kidney Int. 2007; 71: 738-43
|
|
|
14) Doumouchtsis KK, Kostakis AI, Doumouchtsis SK, et al. The effect of sexual hormone abnormalities on proximal femur bone mineral density in hemodialysis patients and the possible role of RANKL. Hemodial Int. 2008; 12: 100-7
|
|
|
15) Oguz Y, Oktenli C, Ozata M, et al. The midnight-to-morning urinary cortisol increment method is not reliable for the assessment of hypothalamic-pituitary-adrenal insufficiency in patients with end-stage kidney disease. J Endocrinol Invest. 2003; 26: 609-15
|
|
|
16) Yajima A, Inaba M, Ogawa Y, et al. Significance of time-course changes of serum bone markers after parathyroidectomy in patients with uraemic hyperparathyroidism. Nephrol Dial Transplant. 2007; 22: 1645-57
|
|
|
17) Martin TJ, Seeman E. Bone remodeling: its local reguration and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab. 2008; 22: 701-22 (Review)
|
|
|
18) Doumouchtsis K, Perrea D, Doumouchtsis S, et al. Regulatory effect of parathyroid hormone on sRANKL-osteoprotegerin in hemodialysis. Ther Apher Dial. 2009; 13: 49-55
|
|
|
19) Gonnelli S, Montagnani A, Cafferelli C, et al. Osteoprotegerin (OPG) and receptor activator of NF-κB ligand (RANK-L) serum levels in patients on chronic hemodialysis. J Endocrinol Invest. 2005; 28: 534-9
|
|
|
20) Menaa C, Esser E, Sprague SM. Beta2-microglobulin stimulates osteoclast formation. Kidney Int. 2008; 73: 1275-81
|
|
|
21) Yajima A, Inaba M, Tominaga Y, et al. Impact of parathyroidectomy on multinucleated and mononucleated osteoclasts on the cancellous, endocortical, and intracortical spaces in patients with secondary hyperparathyroidism. Nephrol Dial Transplant. 2007; 22(Suppl 6): vi356
|
|
|
22) Bar-Shavit Z. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem. 2007; 102: 1130-9
|
|
|
23) Poole KE, Vedi S, Debiram I, et al. Bone structure and remodelling in stroke patients: early effects of zoledronate. Bone. 2009; 44: 629-33
|
|
|
24) Cardoso L, Herman BC, Verborgt O, et al. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009; 24: 597-605
|
|
|
25) Kogianni G, Mann V, Noble S. Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J Bone Miner Res. 2008; 23: 915-27
|
|
|
26) Manolagas SC. Choreography from the tomb: An emerging role of dying osteocytes in the purposeful, and perhaps not so purposeful, targeting of bone remodeling. BoneKey osteovision. 2006; 3: 5-14
|
|
|
27) Aguirre JI, Plotkin LI, Stewart SA, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006; 21(4); 605-15
|
|
|
28) Seeman E, Delmas PD. Review; Bone quality- The material and structural basis of bone strength and fragility. N Engl J Med. 2006; 354: 2250-61
|
|
|
29) Seeman E. Structural basis of growth-related gain and age-related loss of bone strength. Reumatology (Oxford). 2008; 47(Suppl 4): iv2-8
|
|
|
30) Zebaze RM, Jones A, Knackstedt M, et al. Construction of the femoral neck during growth determines its strength in old age. J Bone Miner Res. 2007; 22: 1055-61
|
|
|
31) Yajima A, Ogawa Y, Takahashi HE, et al. Changes of bone remodeling immediately after parathyroidectomy for secondary hyperparathyroidism. Am J Kidney Dis. 2003; 42: 729-38
|
|
|
32) Shiizaki K, Hatamura I, Negi S, et al. Direct maxacalcitol injection into hyperplastic parathyroids improves skeletal changes in secondary hyperparathyroidism. Kidney Int. 2006; 70: 486-95
|
|
|
33) Yajima A, Tominaga Y, Inaba M, et al. Changes of adipocyte volume and number in the bone marrow in patients with secondary hyperparathyroidism. J Am Soc Nephrol. 2007; 18(abstract Issue): 492A
|
|
|
34) Yajima A, Akizawa T, Tsukamoto Y, et al. Maintenance of adipocyte volume after treatment with cinacalcet hydrochloride in patients with secondary hyperparathyroidism. J Am Soc Nephrol. 2008; 19(Abstract Issue): 713A
|
|
|
35) Lee HW, Kim SY, Kim AY, et al. Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells. 2009; 27: 2254-62
|
|
|
36) Takada I, Kouzmenko AP, Kato S. Molecular switching of osteoblastogenesis versus adipogenesis: implications for targeted therapies. Expert Opin Ther Targets. 2009; 13: 593-603
|
|
|
37) Andress DL. Adynamic bone in patients with chronic kidney disease. Kidney Int. 2008; 73: 1345-54
|
|
|
38) Yajima A, Akizawa T, Tsukamoto Y, et al. Impact of cinacalcet hydrochloride on bone histology in patients with secondary hyperparathyroidism. Ther Apher Dial. 2008; 12(Suppl 1): S38-S43
|
|
|
39) Iwasaki Y, Yamato H, Nii-Kono T, et al. Insufficiency of PTH action on bone in uremia. Kidney Int Suppl. 2006; 102: S34-6
|
|
|
40) Panuccio V, Cutrupi S, Pizzini P, et al. Neuropeptide Y and markers of osteoblast activity in dialysis patients: a cross-sectional study. Am J Kidney Dis. 2007; 50: 1001-8
|
|
|
41) Skerry TM. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys. 2008; 473: 117-23
|
|
|
42) Vatsa A, Breuls RG, Semeins CM, et al. Osteocyte morphology in fibula and calvaria-is there a role for mechanosensing? Bone. 2008; 43: 452-8
|
|
|
43) Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone. 2008; 42: 606-15
|
|
|
44) You L, Temiyasathit S, Lee P, et al. Osteocytes as mechanosensors in the inhibition of bone resorption due to mechanical loading. Bone. 2008; 42: 172-9
|
|
|
45) Siller-Jackson AJ, Burra S, Gu S, et al. Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem. 2008; 283: 26374-82
|
|
|
46) Yajima A, Ito A, Tominaga Y, et al. Significance of osteocyte in minimodeling formation after parathyroidectomy for secondary hyperparathyroidism. J Am Soc Nephrol. 2008; 19(Abstract Issue): 713A
|
|
|
47) Yajima A, Inaba M, Tominaga Y, et al. Bone formation by minimodeling is more active than remodeling after parathyroidectomy. Kidney Int. 2008; 74: 775-81
|
|
|
48) Yajima A, Inaba M, Tominaga Y, et al. Minimodeling reduces the rate of cortical bone loss in patients with secondary hyperparathyroidism. Am J Kidney Dis. 2007; 49: 440-51
|
|
|
49) Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007; 5: 464-75
|
|
|
50) Taylor AF, Saunders MM, Shingle DL, et al. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am J Physiol Cell Physiol. 2007; 292: C545-52
|
|
|
51) Tami AE, Nasser P, Verborgt O, et al. The role of interstitial fluid flow in the remodeling response to fatigue loading. J Bone Miner Res. 2002; 17: 2030-7
|
|
|
52) Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerotin. J Biol Chem. 2008; 283: 5866-75
|
|
|
53) Yajima A, Ito A, Tominaga Y, et al. Impact of osteocytic turnover on the reduction of fracture risk and hypocalcemia after parathyroidectomy for secondary hyperparathyroidism. J Am Soc Nephrol. 2008; 19 (Abstract Issue): 713A
|
|
|
54) O'Brien CA, Plotkin LI, Galli C, et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS one. 2008; 3: e2942
|
|
|
55) Selim AA, Mahon M, Juppner H, et al. Role of calcium channels in carboxyl-terminal parathyroid hormone receptor signaling. Am J Physiol Cell Physiol. 2006; 291: C114-21
|
|
|
56) Torres PU, Prié D, Beck L, et al. Klotho gene, phosphocalcic metabolism, and survival in dialysis. J Ren Nutr. 2009; 19: 50-6
|
|
|
57) Ubaidus S, Li M, Sultana S, et al. FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. J Electron Microsc (Tokyo). 2009. [Epub ahead of print]
|
|
|
58) Gutiérrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008; 359: 584-92
|
|
|
59) Scheideler M, Elabd C, Zaragosi LE, et al. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics. 2008; 17: 340
|
|
|
60) Takeuchi Y, Suzawa M, Fukumoto S, et al. Vitamin K(2) inhibits adipogenesis, osteoclastogenesis, and ODF/RANK ligand expression in murine bone marrow cell cultures. Bone. 2000; 27: 769-76
|
|
|
61) Nozaka K, Miyakoshi N, Kasukawa Y, et al. Intermittent administration of human parathyroid hormone enhances bone formation and union at the site of cancellous bone osteotomy in normal and ovariectomized rats. Bone. 2008; 42: 90-7
|
|
|
62) Ecklund K, Vajapeyam S, Feldman HA, et al. Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res. 2009; [Epub ahead of print]
|
|
|
63) Frost HM. Bone modeling by drifts-bone size, shape, mechanical functions and effects, gains, conservation: the Utah paradigm of skeletal physiology (Vol I). Athens, Greece: International Society of Musculoskeletal and Neuronal Interactions; 2004. p. 75-142
|
|
|
64) Jee WS, Tian XY, Setterberg RB. Cancellous bone minimodeling-based formation: a Frost, Takahashi legacy. J Musculoskelet Neuronal Interact. 2007; 7: 232-9
|
|
|
65) Rauch F, Travers R, Glorieux FH. Cellular activity on the seven surfaces of iliac bone: a histomorphometric study in children and adolescents. J Bone Miner Res. 2006; 21: 513-9
|
|
|
66) Schober HC, Han ZH, Foldes AJ, et al. Mineralized bone loss at different sites in dialysis patients: Implications for prevention. J Am Soc Nephrol. 1998; 9: 1225-33
|
|
|
67) Sornay-Rendu E, Boutroy S, Munoz F, et al. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007; 22: 425-33
|
|
|
68) Nickolas TL, Leonard MB, Shane E. Chronic kidney disease and bone fracture: a growing concern. Kidney Int. 2008; 74: 721-31 (Review)
|
|
|
69) Malluche HH, Mawad H, Monier-Faugere MC. Effects of treatment of renal osteodystrophy on bone histology. Clin J Am Soc Nephrol. 2008; 3(Suppl 3): S157-63
|
|
|
70) Ferreira A, Frazão JM, Monier-Faugere MC, et al. Effects of sevelamer hydrochloride and calcium carbonate on renal osteodystrophy in hemodialysis patients. J Am Soc Nephrol. 2008; 19: 405-12
|
|
|
71) Malluche HH, Siami GA, Swanepoel C, et al. Improvements in renal osteodystrophy in patients treated with lanthanum carbonate for two years. Clin Nephrol. 2008; 70: 284-95
|
|
|
72) Ureña P, Jacobson SH, Zitt E, et al. Cinacalcet and achievement of the NKF/K-DOQI recommended target values for bone and mineral metabolism in real-world clinical practice-the ECHO observational study. Nephrol Dial Transplant. 2009; 24: 2852-9
|
|
|
73) Malluche HH, Monier-Faugere MC, Wang G, et al. An assessment of cinacalcet HCl effects on bone histology in dialysis patients with secondary hyperparathyroidism. Clin Nephrol. 2008; 69: 269-78
|
|
|