医中誌リンクサービス


文献リスト

1) Wu XW, Lee CC, Muzny DM, et al. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A. 1989; 86: 9412-6
PubMed CrossRef
医中誌リンクサービス
2) Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002; 417: 447-52
PubMed
医中誌リンクサービス
3) 木村弘章, 市田公美, 細山田真, 他. 近位尿細管管腔膜側に存在するヒト有機陰イオントランスポーターhOAT4 (human Organic Anion Transporter 4) における尿酸輸送の解析. 痛風と核酸代謝. 2001; 25: 113-20
医学中央雑誌刊行会
医中誌リンクサービス
4) Hagos Y, Stein D, Ugele B, et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007; 18: 430-9
PubMed CrossRef
医中誌リンクサービス
5) Bahn A, Hagos Y, Reuter S, et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem. 2008; 283: 16332-41
PubMed CrossRef
医中誌リンクサービス
6) Van Aubel RA, Smeets PH, van den Heuvel JJ, et al. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol. 2005; 288: F327-33
PubMed
医中誌リンクサービス
7) Ichida K, Hosoyamada M, Hisatome I, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004; 15: 164-73
PubMed CrossRef
医中誌リンクサービス
8) Wakida N, Tuyen DG, Adachi M, et al. Mutations in human urate transporter 1 gene in presecretory reabsorption defect type of familial renal hypouricemia. J Clin Endocrinol Metab. 2005; 90: 2169-74
PubMed CrossRef
医中誌リンクサービス
9) Li S, Sanna S, Maschio A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007; 3: e194
PubMed CrossRef
医中誌リンクサービス
10) Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008; 83: 744-51
PubMed CrossRef
医中誌リンクサービス
11) Komoda F, Sekine T, Inatomi J, et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol. 2004; 19: 728-33
PubMed CrossRef
医中誌リンクサービス
12) Iwai N, Mino Y, Hosoyamada M, et al. A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int. 2004; 66: 935-44
PubMed CrossRef
医中誌リンクサービス
13) Taniguchi A, Urano W, Yamanaka M, et al. A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum. 2005; 52: 2576-7
PubMed CrossRef
医中誌リンクサービス
14) Ichida K, Hosoyamada M, Kamatani N, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet. 2008; 74: 243-51
PubMed CrossRef
医中誌リンクサービス
15) Cheong HI, Kang JH, Lee JH, et al. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr Nephrol. 2005; 20: 886-90
PubMed CrossRef
医中誌リンクサービス
16) Tzovaras V, Chatzikyriakidou A, Bairaktari E, et al. Absence of SLC22A12 gene mutations in Greek Caucasian patients with primary renal hypouricaemia. Scand J Clin Lab Invest. 2007; 67: 589-95
PubMed CrossRef
医中誌リンクサービス
17) Doring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008; 40: 430-6
PubMed CrossRef
医中誌リンクサービス
18) Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008; 40: 437-42
PubMed CrossRef
医中誌リンクサービス
19) McArdle PF, Parsa A, Chang YP, et al. Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish. Arthritis Rheum. 2008; 58: 2874-81
PubMed CrossRef
医中誌リンクサービス
20) Caulfield MJ, Munroe PB, O'Neill D, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008; 5: e197
PubMed CrossRef
医中誌リンクサービス
21) Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008; 283: 26834-8
PubMed CrossRef
医中誌リンクサービス
22) 金井好克. 尿酸排泄異常の成因 尿酸トランスポーター. 高尿酸血症と痛風. 2009; 17: 21-7
医学中央雑誌刊行会
医中誌リンクサービス
23) 市田公美. 尿酸排泄異常の成因 腎性低尿酸血症. 高尿酸血症と痛風. 2009; 17: 28-32
医学中央雑誌刊行会
医中誌リンクサービス
24) Sato M, Mueckler M. A conserved amino acid motif (R-X-G-R-R) in the Glut1 glucose transporter is an important determinant of membrane topology. J Biol Chem. 1999; 274: 24721-5
PubMed CrossRef
医中誌リンクサービス
25) Keembiyehetty C, Augustin R, Carayannopoulos MO, et al. Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol Endocrinol. 2006; 20: 686-97
PubMed
医中誌リンクサービス
26) Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008; 372: 1953-61
PubMed CrossRef
医中誌リンクサービス
27) Voruganti VS, Goring HH, Mottl A, et al. Genetic influence on variation in serum uric acid in American Indians: the strong heart family study. Hum Genet. 2009; 126: 667-76.
PubMed CrossRef
医中誌リンクサービス
28) Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28, 141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009; 5: e1000504
PubMed CrossRef
医中誌リンクサービス
29) Anzai N, Miyazaki H, Noshiro R, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem. 2004; 279: 45942-50
PubMed CrossRef
医中誌リンクサービス
30) Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007; 316: 1331-6
PubMed CrossRef
医中誌リンクサービス
31) Yang C, Pring M, Wear MA, et al. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev Cell. 2005; 9: 209-21
PubMed CrossRef
医中誌リンクサービス
32) Skovhus KV, Bergholdt R, Erichsen C, et al. Identification and characterization of secretagogin promoter activity. Scand J Immunol. 2006; 64: 639-45
PubMed CrossRef
医中誌リンクサービス
33) Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: A function-based genetic analysis in a Japanese population. Sci Transl Med. 2009; 1: 5ra11
医中誌リンクサービス
34) Cheng LS, Chiang SL, Tu HP, et al. Genomewide scan for gout in Taiwanese aborigines reveals linkage to chromosome 4q25. Am J Hum Genet. 2004; 75: 498–503
PubMed CrossRef
医中誌リンクサービス
35) Sorensen LB, Role of the intestinal tract in the elimination of uric acid. Arthritis Rheum. 1965; 8: 694–706
PubMed CrossRef
医中誌リンクサービス
36) Sica DA, Schoolwerth A. Elements of normal renal structure and function: Renal handling of organic anions and cations. In: Brenner BM. editor. The Kidney. Philadelphia: Saunders; 2004. p. 645–9
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp