1) Wu XW, Lee CC, Muzny DM, et al. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A. 1989; 86: 9412-6
|
|
|
2) Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002; 417: 447-52
|
|
|
3) 木村弘章, 市田公美, 細山田真, 他. 近位尿細管管腔膜側に存在するヒト有機陰イオントランスポーターhOAT4 (human Organic Anion Transporter 4) における尿酸輸送の解析. 痛風と核酸代謝. 2001; 25: 113-20
|
|
|
4) Hagos Y, Stein D, Ugele B, et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007; 18: 430-9
|
|
|
5) Bahn A, Hagos Y, Reuter S, et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem. 2008; 283: 16332-41
|
|
|
6) Van Aubel RA, Smeets PH, van den Heuvel JJ, et al. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol. 2005; 288: F327-33
|
|
|
7) Ichida K, Hosoyamada M, Hisatome I, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004; 15: 164-73
|
|
|
8) Wakida N, Tuyen DG, Adachi M, et al. Mutations in human urate transporter 1 gene in presecretory reabsorption defect type of familial renal hypouricemia. J Clin Endocrinol Metab. 2005; 90: 2169-74
|
|
|
9) Li S, Sanna S, Maschio A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007; 3: e194
|
|
|
10) Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia. Am J Hum Genet. 2008; 83: 744-51
|
|
|
11) Komoda F, Sekine T, Inatomi J, et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol. 2004; 19: 728-33
|
|
|
12) Iwai N, Mino Y, Hosoyamada M, et al. A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int. 2004; 66: 935-44
|
|
|
13) Taniguchi A, Urano W, Yamanaka M, et al. A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum. 2005; 52: 2576-7
|
|
|
14) Ichida K, Hosoyamada M, Kamatani N, et al. Age and origin of the G774A mutation in SLC22A12 causing renal hypouricemia in Japanese. Clin Genet. 2008; 74: 243-51
|
|
|
15) Cheong HI, Kang JH, Lee JH, et al. Mutational analysis of idiopathic renal hypouricemia in Korea. Pediatr Nephrol. 2005; 20: 886-90
|
|
|
16) Tzovaras V, Chatzikyriakidou A, Bairaktari E, et al. Absence of SLC22A12 gene mutations in Greek Caucasian patients with primary renal hypouricaemia. Scand J Clin Lab Invest. 2007; 67: 589-95
|
|
|
17) Doring A, Gieger C, Mehta D, et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat Genet. 2008; 40: 430-6
|
|
|
18) Vitart V, Rudan I, Hayward C, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008; 40: 437-42
|
|
|
19) McArdle PF, Parsa A, Chang YP, et al. Association of a common nonsynonymous variant in GLUT9 with serum uric acid levels in old order amish. Arthritis Rheum. 2008; 58: 2874-81
|
|
|
20) Caulfield MJ, Munroe PB, O'Neill D, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008; 5: e197
|
|
|
21) Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1 (SLC2A9) in humans. J Biol Chem. 2008; 283: 26834-8
|
|
|
22) 金井好克. 尿酸排泄異常の成因 尿酸トランスポーター. 高尿酸血症と痛風. 2009; 17: 21-7
|
|
|
23) 市田公美. 尿酸排泄異常の成因 腎性低尿酸血症. 高尿酸血症と痛風. 2009; 17: 28-32
|
|
|
24) Sato M, Mueckler M. A conserved amino acid motif (R-X-G-R-R) in the Glut1 glucose transporter is an important determinant of membrane topology. J Biol Chem. 1999; 274: 24721-5
|
|
|
25) Keembiyehetty C, Augustin R, Carayannopoulos MO, et al. Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol Endocrinol. 2006; 20: 686-97
|
|
|
26) Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008; 372: 1953-61
|
|
|
27) Voruganti VS, Goring HH, Mottl A, et al. Genetic influence on variation in serum uric acid in American Indians: the strong heart family study. Hum Genet. 2009; 126: 667-76.
|
|
|
28) Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28, 141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009; 5: e1000504
|
|
|
29) Anzai N, Miyazaki H, Noshiro R, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem. 2004; 279: 45942-50
|
|
|
30) Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007; 316: 1331-6
|
|
|
31) Yang C, Pring M, Wear MA, et al. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev Cell. 2005; 9: 209-21
|
|
|
32) Skovhus KV, Bergholdt R, Erichsen C, et al. Identification and characterization of secretagogin promoter activity. Scand J Immunol. 2006; 64: 639-45
|
|
|
33) Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: A function-based genetic analysis in a Japanese population. Sci Transl Med. 2009; 1: 5ra11
|
|
|
34) Cheng LS, Chiang SL, Tu HP, et al. Genomewide scan for gout in Taiwanese aborigines reveals linkage to chromosome 4q25. Am J Hum Genet. 2004; 75: 498–503
|
|
|
35) Sorensen LB, Role of the intestinal tract in the elimination of uric acid. Arthritis Rheum. 1965; 8: 694–706
|
|
|
36) Sica DA, Schoolwerth A. Elements of normal renal structure and function: Renal handling of organic anions and cations. In: Brenner BM. editor. The Kidney. Philadelphia: Saunders; 2004. p. 645–9
|
|
|