1) Fushimi K, Uchida S, Hara Y, et al. Cloning and expression of apical membrane water channel of rat kidney collecting tubule. Nature. 1993; 361: 549-52
|
|
|
2) Nielsen S, Frøkiaer J, Marples D, et al. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002; 82: 205-44
|
|
|
3) Noda Y, Sasaki S. Regulation of aquaporin-2 trafficking and its binding protein complex. Biochim Biophys Acta. 2006; 1758: 1117-25
|
|
|
4) Henn V, Edemir B, Stefan E, et al. Identification of a novel A-kinase anchoring protein 18 isoform and evidence for its role in the vasopressin-induced aquaporin-2 shuttle in renal principal cells. J Biol Chem. 2004; 279: 26654-65
|
|
|
5) Okutsu R, Rai T, Kikuchi A, et al. AKAP220 colocalizes with AQP2 in the inner medullary collecting ducts. Kidney Int. 2008; 74: 1429-33
|
|
|
6) Chou CL, Yip KP, Michea L, et al. Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin. J Biol Chem. 2000; 275: 36839-46
|
|
|
7) Bouley R, Breton S, Sun T, et al. Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells. J Clin Invest. 2000; 106: 1115-26
|
|
|
8) Nejsum LN, Zelenina M, Aperia A, et al. Bidirectional regulation of AQP2 trafficking and recycling: involvement of AQP2-S256 phosphorylation. Am J Physiol Renal Physiol. 2005; 288: F930-8
|
|
|
9) de Seigneux S, Nielsen J, Olesen ET, et al. Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney. Am J Physiol Renal Physiol. 2007; 293: F87-99
|
|
|
10) Mouri T, Inoue T, Nonoguchi H, et al. Acute and chronic metabolic acidosis interferes with aquaporin-2 translocation in the rat kidney collecting ducts. Hypertens Res. 2009; 32: 358-63
|
|
|
11) Hoffert JD, Nielsen J, Yu MJ, et al. Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. Am J Physiol Renal Physiol. 2007; 292: F691-700
|
|
|
12) Fenton RA, Moeller HB, Hoffert JD, et al. Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proc Natl Acad Sci U S A. 2008; 105: 3134-9
|
|
|
13) Lu HJ, Matsuzaki T, Bouley R, et al. The phosphorylation state of serine 256 is dominant over that of serine 261 in the regulation of AQP2 trafficking in renal epithelial cells. Am J Physiol Renal Physiol. 2008; 295: F290-4
|
|
|
14) Hoffert JD, Fenton RA, Moeller HB, et al. Vasopressin-stimulated increase in phosphorylation at ser-269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem. 2008; 283: 24617-27
|
|
|
15) Moeller HB, MacAulay N, Knepper MA, et al. Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating. Am J Physiol Renal Physiol. 2009; 296: F649-57
|
|
|
16) Sohara E, Rai T, Yang SS, et al. Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation. Proc Natl Acad Sci U S A. 2006; 103: 14217-22
|
|
|
17) Noda Y, Horikawa S, Furukawa T, et al. Aquaporin-2 trafficking is regulated by PDZ-domain containing protein SPA-1. FEBS Lett. 2004; 568: 139-45
|
|
|
18) Kuwahara M, Iwai K, Ooeda T, et al. Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus. Am J Hum Genet. 2001; 69: 738-48
|
|
|
19) Noda Y, Sasaki S. The role of actin remodeling in the trafficking of intracellular vesicles, transporters, and channels: focusing on aquaporin-2. Pflugers Arch. 2008; 456: 737-45
|
|
|
20) Tamma G, Klussmann E, Procino G, et al. cAMP-induced AQP2 translocation is associated with RhoA inhibition through RhoA phosphorylation and interaction with RhoGDI. J Cell Sci. 2003; 116: 1519-25
|
|
|
21) Tamma G, Wiesne B, Furkert J, et al. The prostaglandin E2 analogue sulprostone antagonizes vasopressin-induced antidiuresis through activation of Rho. J Cell Sci. 2003; 116: 3285-94
|
|
|
22) Nedvetsky PI, Stefan E, Frische S, et al. A role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic. 2007; 8: 110-23
|
|
|
23) Noda Y, Sasaki S. Actin-binding channels. Prog Brain Res. 2008; 170: 551-7
|
|
|
24) Procino G, Barbieri C, Tamma G, et al. AQP2 exocytosis in the renal collecting duct-involvement of SNARE isoforms and the regulatory role of Munc18b. J Cell Sci. 2008; 121: 2097-106
|
|
|
25) Sun TX, Van Hoek A, Huang Y, et al. Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol. 2002; 282: F998-1011
|
|
|
26) Lu H, Sun TX, Bouley R, et al. Inhibition of endocytosis causes phosphorylation (S256)-independent plasma membrane accumulation of AQP2. Am J Physiol. 2004; 286: F233-43
|
|
|
27) Lu HA, Sun TX, Matsuzaki T, et al. Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. J Biol Chem. 2007; 282: 28721-32
|
|
|
28) Kamsteeg EJ, Duffield AS, Konings IB, et al. MAL decreases the internalization of the aquaporin-2 water channel. Proc Natl Acad Sci U S A. 2007; 104: 16696-701
|
|
|
29) Klumperman J, Deen PM. Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci U S A. 2006; 103: 18344-9
|
|
|
30) Kamsteeg EJ, Savelkoul PJ, Hendriks G, et al. Missorting of the aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258. Pflügers Arch. 2008; 455: 1041-54
|
|
|
31) van Balkom BW, Boone M, Hendriks G, et al. LIP5 Interacts with aquaporin 2 and facilitates its lysosomal degradation. J Am Soc Nephrol. 2009; 20: 990-1001
|
|
|
32) Noda Y, Horikawa S, Kanda E, et al. Reciprocal interaction with G-actin and tropomyosin is essential for aquaporin-2 trafficking. J Cell Biol. 2008; 182: 587-601
|
|
|
33) Noda Y, Horikawa S, Katayama Y, et al. Identification of a multiprotein“motor"complex binding to water channel aquaporin-2. Biochem Biophys Res Commun. 2005; 330: 1041-7
|
|
|
34) Noda Y, Horikawa S, Katayama Y, et al. Water channel aquaporin-2 directly binds to actin. Biochem Biophys Res Commun. 2004; 322: 740-5
|
|
|
35) Nunes P, Hasler U, McKee M, et al. A novel fluorimetry-based secretion assay to monitor vasopressin-induced exocytosis in LLC-PK1 cells expressing aquaporin-2 (AQP2). Am J Physiol Renal Physiol. 2008; 295: C1476-87
|
|
|
36) Kasono K, Saito T, Saito T, et al. Hypertonicity regulates the aquaporin-2 promoter independently of arginine vasopressin. Nephrol Dial Transplant. 2005; 20: 509-15
|
|
|
37) Saito T, Saito T, Kasono K, et al. Hypotonicity reduces the activity of murine aquaporin-2 promoter induced by dibutyryl cAMP. Exp Physiol. 2008; 93: 1147-56
|
|
|
38) van Balkom BW, van Raak M, Breton S, et al. Hypertonicity is involved in redirecting the aquaporin-2 water channel into the basolateral, instead of the apical, plasma membrane of renal epithelial cells. J Biol Chem. 2003; 278: 1101-7
|
|
|
39) Hasler U, Nunes P, Bouley R, et al. Acute hypertonicity alters aquaporin-2 trafficking and induces a MAP kinase-dependent accumulation at the plasma membrane of renal epithelial cells. J Biol Chem. 2008; 283: 26643-61
|
|
|
40) Tamma G, Procino G, Strafino A, et al. Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translocation of ICln in renal cells. Endocrinology. 2007; 148: 1118-30
|
|
|
41) Li YH, Eto K, Horikawa S, et al. Aquaporin-2 regulates cell volume recovery via tropomyosin. Int J Biochem Cell Biol. 2009; 41: 2466-76
|
|
|