1) Lamb RE, Goldstein BJ. Modulating an oxidative-inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int J Clin Pract. 2008; 62: 1087-95
|
|
|
2) Wold LE, Ceylan-Isik AF, Ren J. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy. Acta Pharmacol Sin. 2005; 26: 908-17
|
|
|
3) Goldstein BJ, Mahadev K, Wu X. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes. 2005; 54: 311-21
|
|
|
4) 荒木栄一, 本島寛之, 井形元維, 他. 酸化ストレスとインスリン抵抗性. In: 金澤康徳, 武谷雄二, 関原久彦, 山田信博, 編. Annual Review 糖尿病・代謝・内分泌 2006. 東京: 中外医学社; 2006. p. 5-13
|
|
|
5) Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006; 7: 85-96
|
|
|
6) Pessler-Cohen D, Pekala PH, Kovsan J, et al. GLUT4 repression in response to oxidative stress is associated with reciprocal alterations in C/EBP alpha and delta isoforms in 3T3-L1 adipocytes. Arch Physiol Biochem. 2006; 112: 3-12
|
|
|
7) Demozay D, Mas JC, Rocchi S, et al. FALDH reverses the deleterious action of oxidative stress induced by lipid peroxidation product 4-hydroxynonenal on insulin signaling in 3T3-L1 adipocytes. Diabetes. 2008; 57: 1216-22
|
|
|
8) Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006; 444: 860-7
|
|
|
9) Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006; 440: 944-8
|
|
|
10) Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal. 2005; 7: 1040-52
|
|
|
11) Eriksson JW. Metabolic stress in insulins target cells leads to ROS accumulation - a hypothetical common pathway causing insulin resistance. FEBS Lett. 2007; 581: 3734-42
|
|
|
12) Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004; 114: 1752-61
|
|
|
13) Soares AF, Guichardant M, Cozzone D, et al. Effects of oxidative stress on adiponectin secretion and lactate production in 3T3-L1 adipocytes. Free Radic Biol Med. 2005; 38: 882-9
|
|
|
14) Kamigaki M, Sakaue S, Tsujino I, et al. Oxidative stress provokes atherogenic changes in adipokine gene expression in 3T3-L1 adipocytes. BBRC. 2006; 339: 624-32
|
|
|
15) Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005; 115: 1111-9
|
|
|
16) Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006; 116: 1494-505
|
|
|
17) Kamei N, Tobe K, Suzuki R, et al. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem. 2006; 281: 26602-14
|
|
|
18) Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006; 116: 115-24
|
|
|
19) Lin Y, Berg AH, Iyengar P, et al. The hyper-glycemia-induced inflammatory response in adipo-cytes: the role of reactive oxygen species. J Biol Chem. 2005; 280: 4617-26
|
|
|
20) Kumashiro N, Tamura Y, Uchida T, et al. Impact of oxidative stress and peroxisome proliferator-activated receptor gamma coactivator-1alpha in hepatic insulin resistance. Diabetes. 2008; 57: 2083-91
|
|
|
21) Evans JL, Goldfine ID. Alpha-lipoic acid: a multifunctional antioxidant that improves insulin sensitivity in patients with type 2 diabetes. Diabetes Technol Ther. 2000; 2: 401-13
|
|
|
22) Oprescu AI, Bikopoulos G, Naassan A, et al. Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo. Diabetes. 2007; 56: 2927-37
|
|
|
23) Xiao C, Giacca A, Lewis GF. Oral taurine but not N-acetylcysteine ameliorates NEFA-induced impairment in insulin sensitivity and beta cell function in obese and overweight, non-diabetic men. Diabetologia. 2008; 51: 139-46
|
|
|
24) Marchioli R, Schweiger C, Levantesi G, et al. Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. Lipids. 2001; 36: S53-63
|
|
|
25) Devaraj S, Leonard S, Traber MG, et al. Gamma-tocopherol supplementation alone and in combination with alpha-tocopherol alters biomarkers of oxidative stress and inflammation in subjects with metabolic syndrome. Free Radic Biol Med. 2008; 44: 1203-8
|
|
|
26) Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003; 112: 1821-30
|
|
|
27) Chiasson JL, Josse RG, Gomis R, et al. (STOP-NIDDM Trail Research Group). Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002; 359: 2072-7
|
|
|
28) Chiasson JL, Josse RG, Gomis R, et al. (STOP-NIDDM Trial Research Group). Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA. 2003; 290: 486-94
|
|
|
29) Neri S, Signorelli SS, Torrisi B, et al. Effects of antioxidant supplementation on postprandial oxidative stress and endothelial dysfunction: a single-blind, 15-day clinical trial in patients with untreated type 2 diabetes, subjects with impaired glucose tolerance, and healthy controls. Clin Ther. 2005; 27: 1764-73
|
|
|
30) White M, Lepage S, Lavoie J, et al. Effects of combined candesartan and ACE inhibitors on BNP, markers of inflammation and oxidative stress, and glucose regulation in patients with symptomatic heart failure. J Card Fail. 2007; 13: 86-94
|
|
|
31) Ferder L, Inserra F, Martinez-Maldonado M. Inflammation and the metabolic syndrome: role of angiotensin II and oxidative stress. Curr Hypertens Rep. 2006; 8: 191-8
|
|
|
32) Lee MH, Song HK, Ko GJ, et al. Angiotensin receptor blockers improve insulin resistance in type 2 diabetic rats by modulating adipose tissue. Kidney Int. 2008; 74: 890-900
|
|
|