1) 藤原建樹, 高橋幸利. 小児てんかん診療マニュアル. 東京: 診断と治療社; 2006
|
|
|
2) 廣瀬伸一, 伊藤正利. てんかんにおける遺伝子異常の意義. 小児科診療. 2007; 70: 45-51
|
|
|
3) Ceulemans BP, Claes LR, Lagae LG. Clinical correlations of mutations in the SCN1A gene: from febrile seizures to severe myoclonic epilepsy in infancy. Pediatr Neurol. 2004; 30: 236-43
|
|
|
4) Mulley JC, Scheffer IE, Petrou S, et al. SCN1A mutations and epilepsy. Hum Mutat. 2005; 25: 535-42
|
|
|
5) Mantegazza M, Gambardella A, Rusconi R, et al. Identification of an Nav1. 1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc Natl Acad Sci U S A. 2005; 102: 18177-82
|
|
|
6) Feinberg AP, Leahy WR. Infantile spasms: case report of sex-linked inheritance. Dev Med Child Neurol. 1977; 19: 524-6
|
|
|
7) Stromme P, Mangelsdorf ME, Shaw MA, et al. Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet. 2002; 30: 441-5
|
|
|
8) Kitamura K, Yanazawa M, Sugiyama N, et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet. 2002; 32: 359-69
|
|
|
9) Kato M, Das S, Petras K, et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum Mutat. 2004; 23: 147-59
|
|
|
10) Bienvenu T, Poirier K, Friocourt G, et al. ARX, a novel Prd-class-homeobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum Mol Genet. 2002; 11: 981-91
|
|
|
11) Guerrini R, Moro F, Kato M, et al. Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology. 2007; 69: 427-33
|
|
|
12) Kato M, Saitoh S, Kamei A, et al. A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am J Hum Genet. 2007; 81: 361-6
|
|
|
13) Anderson SA, Eisenstat DD, Shi L, et al. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science. 1997; 278: 474-6
|
|
|
14) Lumsden A, Gulisano M. Neocortical neurons: where do they come from? Science. 1997; 278: 402-3
|
|
|
15) Poirier K, Van Esch H, Friocourt G, et al. Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons. Brain Res Mol Brain Res. 2004; 122: 35-46
|
|
|
16) Becher MW, Morrison L, Davis LE, et al. Oculopharyngeal muscular dystrophy in Hispanic New Mexicans. JAMA. 2001; 286: 2437-40
|
|
|
17) Vissers LE, Veltman JA, van Kessel AG, et al. Identification of disease genes by whole genome CGH arrays. Hum Mol Genet. 2005; 14 Spec No. 2: R215-23
|
|
|
18) Saitsu H, Kato M, Mizuguchi T, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet. 2008; 40: 782-8
|
|
|
19) Weimer RM, Richmond JE, Davis WS, et al. Defects in synaptic vesicle docking in unc-18 mutants. Nat Neurosci. 2003; 6: 1023-30
|
|
|
20) Shen J, Tareste DC, Paumet F, et al. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell. 2007; 128: 183-95
|
|
|
21) Verhage M, Maia AS, Plomp JJ, et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science. 2000; 287: 864-9
|
|
|
22) Shoichet SA, Duprez L, Hagens O, et al. Truncation of the CNS-expressed JNK3 in a patient with a severe developmental epileptic encephalopathy. Hum Genet. 2006; 118: 559-67
|
|
|
23) Parpura V, Basarsky TA, Liu F, et al. Glutamate-mediated astrocyte-neuron signalling. Nature. 1994; 369: 744-7
|
|
|
24) Seifert G, Schilling K, Steinhauser C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci. 2006; 7: 194-206
|
|
|
25) De Keyser J, Mostert JP, Koch MW. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J Neurol Sci. 2008; 267(1-2): 3-16
|
|
|
26) Wetherington J, Serrano G, Dingledine R. Astrocytes in the epileptic brain. Neuron. 2008; 58: 168-78
|
|
|
27) Rothstein JD, Patel S, Regan MR, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005; 433: 73-7
|
|
|
28) Lee SG, Su ZZ, Emdad L, et al. Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J Biol Chem. 2008; 283: 13116-23
|
|
|
29) Chu K, Lee ST, Sinn DI, et al. Pharmacological induction of ischemic tolerance by glutamate transporter-1 (EAAT2) upregulation. Stroke. 2007; 38: 177-82
|
|
|
30) Lipski J, Wan CK, Bai JZ, et al. Neuroprotective potential of ceftriaxone in in vitro models of stroke. Neuroscience. 2007; 146: 617-29
|
|
|
31) Rumbaugh JA, Li G, Rothstein J, et al. Ceftriaxone protects against the neurotoxicity of human immunodeficiency virus proteins. J Neurovirol. 2007; 13: 168-72
|
|
|
32) Hinterkeuser S, Schroder W, Hager G, et al. Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci. 2000; 12: 2087-96
|
|
|
33) Kivi A, Lehmann TN, Kovacs R, et al. Effects of barium on stimulus-induced rises of [K+]o in human epileptic non-sclerotic and sclerotic hippocampal area CA1. Eur J Neurosci. 2000; 12: 2039-48
|
|
|
34) Schroder W, Hinterkeuser S, Seifert G, et al. Functional and molecular properties of human astrocytes in acute hippocampal slices obtained from patients with temporal lobe epilepsy. Epilepsia. 2000; 41 Suppl 6: S181-4
|
|
|
35) Proper EA, Hoogland G, Kappen SM, et al. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain. 2002; 125(Pt 1): 32-43
|
|
|
36) Wong M, Ess KC, Uhlmann EJ, et al. Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann Neurol. 2003; 54: 251-6
|
|
|
37) Jansen LA, Uhlmann EJ, Crino PB, et al. Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia. 2005; 46: 1871-80
|
|
|
38) Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 1997; 276: 1699-702
|
|
|
39) Binder DK, Yao X, Zador Z, et al. Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia. 2006; 53: 631-6
|
|
|
40) Tian GF, Azmi H, Takano T, et al. An astrocytic basis of epilepsy. Nat Med. 2005; 11: 973-81
|
|
|
41) Kandel E, Schwartz J, Jessell T. Principles of Neural Science. 4th ed. New York: McGraw-Hill; 2000
|
|
|
42) Kalscheuer VM, Tao J, Donnelly A, et al. Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am J Hum Genet. 2003; 72: 1401-11
|
|
|
43) Weaving LS, Christodoulou J, Williamson SL, et al. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet. 2004; 75: 1079-93
|
|
|
44) Tsacopoulos M, Magistretti PJ. Metabolic coupling between glia and neurons. J Neurosci. 1996; 16: 877-85
|
|
|
45) Tekkok SB, Brown AM, Westenbroek R, et al. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity. J Neurosci Res. 2005; 81: 644-52
|
|
|
46) Brown AM, Baltan Tekkok S, et al. Energy transfer from astrocytes to axons: the role of CNS glycogen. Neurochem Int. 2004; 45: 529-36
|
|
|
47) Butt AM, Kalsi A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4. 1 in glial functions. J Cell Mol Med. 2006; 10: 33-44
|
|
|
48) Verkman AS, Binder DK, Bloch O, et al. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta. 2006; 1758: 1085-93
|
|
|
49) Bergles DE, Diamond JS, Jahr CE. Clearance of glutamate inside the synapse and beyond. Curr Opin Neurobiol. 1999; 9: 293-8
|
|
|
50) Anderson CM, Swanson RA. Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia. 2000; 32: 1-14
|
|
|
51) Bezzi P, Domercq M, Brambilla L, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001; 4: 702-10
|
|
|
52) Domercq M, Brambilla L, Pilati E, et al. P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem. 2006; 281: 30684-96
|
|
|
53) Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science. 1994; 263: 1768-71
|
|
|
54) Scemes E, Giaume C. Astrocyte calcium waves: what they are and what they do. Glia. 2006; 54: 716-25
|
|
|