1) Porter R, Lemon J. Corticospinal Function and Voluntary Movement. New York: Oxford University Press; 1993
|
|
|
2) Kuypers HG. Anatomy of the descending pathways. In: Handbook of Physiology. Mountcastle JMBVB, editor. Bethesda, Maryland: American Physiological Society; 1981. p. 597-666
|
|
|
3) Stanfield BB. The development of the corticospinal projection. Prog Neurobiol. 1992; 38: 169-202
|
|
|
4) Bagnard D, et al. Semaphorins act as attractive and repulsive guidance signals during the development of cortical projections. Development. 1998; 125: 5043-53
|
|
|
5) Richards LJ, et al. Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target. J Neurosci. 1997; 17: 2445-58
|
|
|
6) Metin C, et al. A role for netrin-1 in the guidance of cortical efferents. Development. 1997; 124: 5063-74
|
|
|
7) Tissir F, et al. Protocadherin Celsr3 is crucial in axonal tract development. Nat Neurosci. 2005; 8: 451-7
|
|
|
8) Wang Y, et al. Frizzled-3 is required for the development of major fiber tracts in the rostral CNS. J Neurosci. 2002; 22: 8563-73
|
|
|
9) Jones L, et al. Pax6 is required for the normal development of the forebrain axonal connections. Development. 2002; 129: 5041-52
|
|
|
10) Arlotta P, et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron. 2005; 45: 207-21
|
|
|
11) Marin O, et al. Patterning of the basal telencephalon and hypothalamus is essential for guidance of cortical projections. Development. 2002; 129: 761-73
|
|
|
12) Finger JH, et al. The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J Neurosci. 2002; 22: 10346-56
|
|
|
13) Schreyer DJ, Jones EG. Growth and target finding by axons of the corticospinal tract in prenatal and postnatal rats. Neuroscience. 1982; 7: 1837-53
|
|
|
14) Joosten EA, Gribnau AA, Dederen PJ. Postnatal development of the corticospinal tract in the rat. An ultrastructural anterograde HRP study. Anat Embryol (Berl). 1989; 179: 449-56
|
|
|
15) Rolf B, et al. Pathfinding errors of corticospinal axons in neural cell adhesion molecule-deficient mice. J Neurosci. 2002; 22: 8357-62
|
|
|
16) Joosten EA, Gribnau AA. Immunocytochemical localization of cell adhesion molecule L1 in developing rat pyramidal tract. Neurosci Lett. 1989; 100(1-3): 94-8
|
|
|
17) Cohen NR, et al. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol. 1998; 8: 26-33
|
|
|
18) Schreyer DJ, Jones EH. Topographic sequence of outgrowth of corticospinal axons in the rat: a study using retrograde axonal labeling with Fast blue. Brain Res. 1988; 466: 89-101
|
|
|
19) Stanfield BB, O'Leary DD, Fricks C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature. 1982; 298: 371-3
|
|
|
20) Joosten EA, Gribnau AA, Dederen PJ. An anterograde tracer study of the developing corticospinal tract in the rat: three components. Brain Res. 1987; 433: 121-30
|
|
|
21) Kuang RZ, Kalil K. Development of specificity in corticospinal connections by axon collaterals branching selectively into appropriate spinal targets. J Comp Neurol. 1994; 344: 270-82
|
|
|
22) Reh T, Kalil K. Development of the pyramidal tract in the hamster. I. A light microscopic study. J Comp Neurol. 1981; 200: 55-67
|
|
|
23) Gribnau AA, et al. On the development of the pyramidal tract in the rat. II. An anterograde tracer study of the outgrowth of the corticospinal fibers. Anat Embryol (Berl). 1986; 175: 101-10
|
|
|
24) Eyre JA, et al. Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain. 2000; 123(Pt 1): 51-64
|
|
|
25) O'Leary DD, Terashima T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and “waiting periods". Neuron. 1988; 1: 901-10
|
|
|
26) Bastmeyer M, O'Leary DD. Dynamics of target recognition by interstitial axon branching along developing cortical axons. J Neurosci. 1996; 16: 1450-9
|
|
|
27) Sato M, et al. Action of a diffusible target-derived chemoattractant on cortical axon branch induction and directed growth. Neuron. 1994; 13: 791-803
|
|
|
28) Daston MM, et al. Spatially restricted increase in polysialic acid enhances corticospinal axon branching related to target recognition and innervation. J Neurosci. 1996; 16: 5488-97
|
|
|
29) Szebenyi G, et al. Interstitial branches develop from active regions of the axon demarcated by the primary growth cone during pausing behaviors. J Neurosci. 1998; 18: 7930-40
|
|
|
30) Nagashima M, et al. Cortical neurite outgrowth and growth cone behaviors reveal developmentally regulated cues in spinal cord membranes. J Neurobiol. 1999; 39: 393-406
|
|
|
31) Dent EW, et al. Netrin-1 and semaphorin 3A promote or inhibit cortical axon branching, respectively, by reorganization of the cytoskeleton. J Neurosci. 2004; 24: 3002-12
|
|
|
32) Schreyer DJ, Jones EG. Axon elimination in the developing corticospinal tract of the rat. Brain Res. 1988; 466: 103-19
|
|
|
33) Gorgels TG, et al. A quantitative analysis of the development of the pyramidal tract in the cervical spinal cord in the rat. Anat Embryol (Berl). 1989; 179: 377-85
|
|
|
34) Reh T, Kalil K. Development of the pyramidal tract in the hamster. II. An electron microscopic study. J Comp Neurol. 1982; 205: 77-88
|
|
|
35) Uematsu J, et al. Development of corticospinal tract fibers and their plasticity. II. Neonatal unilateral cortical damage and subsequent development of the corticospinal tract in mice. Brain Dev. 1996; 18: 173-8
|
|
|
36) Low LK, et al. Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex. Proc Natl Acad Sci U S A. 2008; 105: 8136-41
|
|
|
37) Weimann JM, et al. Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron. 1999; 24: 819-31
|
|
|
38) Zhang YA, et al. Regulated nuclear trafficking of the homeodomain protein otx1 in cortical neurons. Mol Cell Neurosci. 2002; 19: 430-46
|
|
|
39) Ozdinler PH, Macklis JD. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci. 2006; 9: 1371-81
|
|
|
40) Liu Y, et al. Ryk-mediated Wnt repulsion regulates posterior-directed growth of corticospinal tract. Nat Neurosci. 2005; 8: 1151-9
|
|
|
41) Hsu JY, Stein SA, Xu XM. Development of the corticospinal tract in the mouse spinal cord: a quantitative ultrastructural analysis. Brain Res. 2006; 1084: 16-27
|
|
|
42) Theriault E, Tatton WG. Postnatal redistribution of pericruciate motor cortical projections within the kitten spinal cord. Brain Res Dev Brain Res. 1989; 45: 219-37
|
|
|
43) Muller K, Kass-Iliyya F, Reitz M. Ontogeny of ipsilateral corticospinal projections: a developmental study with transcranial magnetic stimulation. Ann Neurol. 1997; 42: 705-11
|
|
|
44) Benecke R, Meyer BU, Freund HJ. Reorganisation of descending motor pathways in patients after hemispherectomy and severe hemispheric lesions demonstrated by magnetic brain stimulation. Exp Brain Res. 1991; 83: 419-26
|
|
|
45) Eyre JA, et al. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology. 2001; 57: 1543-54
|
|
|
46) Dottori M, et al. EphA4 (Sek1) receptor tyrosine kinase is required for the development of the corticospinal tract. Proc Natl Acad Sci U S A. 1998; 95: 13248-53
|
|
|
47) Kullander K, et al. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control. Genes Dev. 2001; 15: 877-88
|
|
|
48) Kullander K, et al. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Neuron. 2001; 29: 73-84
|
|
|
49) Iwasato T, et al. Rac-GAP alpha-chimerin regulates motor-circuit formation as a key mediator of EphrinB3/EphA4 forward signaling. Cell. 2007; 130: 742-53
|
|
|
50) Meng Z, Li Q, Martin JH. The transition from development to motor control function in the corticospinal system. J Neurosci. 2004; 24: 605-14
|
|
|
51) Martin JH, Kably B, Hacking A. Activity-dependent development of cortical axon terminations in the spinal cord and brain stem. Exp Brain Res. 1999; 125: 184-99
|
|
|
52) Martin JH, Lee SJ. Activity-dependent competition between developing corticospinal terminations. Neuroreport. 1999; 10: 2277-82
|
|
|
53) Salimi I, Martin JH. Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens. J Neurosci. 2004; 24: 4952-61
|
|
|
54) Salimi I, Friel KM, Martin JH. Pyramidal tract stimulation restores normal corticospinal tract connections and visuomotor skill after early postnatal motor cortex activity blockade. J Neurosci. 2008; 28: 7426-34
|
|
|
55) Takuma H, Sakurai M, Kanazawa I. In vitro formation of corticospinal synapses in an organotypic slice co-culture. Neuroscience. 2002; 109(2): 359-70
|
|
|
56) Ohno T, Maeda H, Sakurai M. Regionally specific distribution of corticospinal synapses because of activity-dependent synapse elimination in vitro. J Neurosci. 2004; 24: 1377-84
|
|
|
57) Kamiyama T, Yoshioka N, Sakurai M. Synapse elimination in the corticospinal projection during the early postnatal period. J Neurophysiol. 2006; 95: 2304-13
|
|
|
58) Maeda H, Ohno T, Sakurai M. Optical and electrophysiological recordings of corticospinal synaptic activity and its developmental change in in vitro rat slice co-cultures. Neuroscience. 2007; 150: 829-40
|
|
|
59) Ohno T, Sakurai M. Critical period for activity-dependent elimination of corticospinal synapses in vitro. Neuroscience. 2005; 132: 917-22
|
|
|
60) Yoshioka N, Murabe N, Sakurai M. Regressive events in corticospinal axons during development in in vitro slice cocultures: Retraction, amputaiton and degeneration. J Comp Neurol. 2008. In press
|
|
|
61) Altman J, Bayer SA. Development of the Hman Spinal Cord. New York: Oxford University Press; 2001
|
|
|
62) Muller K, Homberg V, Lenard HG. Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol. 1991; 81: 63-70
|
|
|
63) Koh TH, Eyre JA. Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex. Arch Dis Child. 1988; 63: 1347-52
|
|
|
64) Forssberg H. Neural control of human motor development. Curr Opin Neurobiol. 1999; 9: 676-82
|
|
|
65) Galea MP, Darian-Smith I. Postnatal maturation of the direct corticospinal projections in the macaque monkey. Cereb Cortex. 1995; 5: 518-40
|
|
|
66) Eyre JA. Corticospinal tract development and its plasticity after perinatal injury. Neurosci Biobehav Rev. 2007; 31: 1136-49
|
|
|
67) Jessell TM. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet. 2000; 1: 20-9
|
|
|
68) Zhuang B, Sockanathan S. Dorsal-ventral patterning: a view from the top. Curr Opin Neurobiol. 2006; 16: 20-4
|
|
|
69) Depienne C, et al. Hereditary spastic paraplegias: an update. Curr Opin Neurol. 2007; 20: 674-80
|
|
|
70) Stevanin G, Ruberg M, Brice A. Recent advances in the genetics of spastic paraplegias. Curr Neurol Neurosci Rep. 2008; 8: 198-210
|
|
|