1) Rothman DL, Magnusson I, Katz LD, et al. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science (New York). 1991; 254: 573-6
|
|
|
2) Taylor R, Magnusson I, Rothman DL, et al. Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest. 1996; 97: 126-32
|
|
|
3) Hwang JH, Perseghin G, Rothman DL, et al. Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest. 1995; 95: 783-7
|
|
|
4) Krssak M, Brehm A, Bernroider E, et al. Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes. 2004; 53: 3048-56
|
|
|
5) Valera A, Pujol A, Pelegrin M, et al. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A. 1994; 91: 9151-4
|
|
|
6) Dentin R, Liu Y, Koo SH, et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature. 2007; 449: 366-9
|
|
|
7) Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001; 413: 179-83
|
|
|
8) Dentin R, Hedrick S, Xie J, et al, Montminy M. Hepatic glucose sensing via the CREB coactivator CRTC2. Science (New York). 2008; 319: 1402-5
|
|
|
9) Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003; 423: 550-5
|
|
|
10) Obici S, Feng Z, Karkanias G, et al. Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nature Neuroscience. 2002; 5: 566-72
|
|
|
11) Pocai A, Lam TK, Gutierrez-Juarez R, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005; 434: 1026-31
|
|
|
12) Inoue H, Ogawa W, Asakawa A, et al. Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metab. 2006; 3: 267-75
|
|
|
13) Petersen KF, Dufour S, Befroy D, et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004; 350: 664-71
|
|
|
14) Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34: 267-73
|
|
|
15) Dahlman I, Forsgren M, Sjogren A, et al. Downregulation of electron transport chain genes in visceral adipose tissue in type 2 diabetes independent of obesity and possibly involving tumor necrosis factor-{alpha}. Diabetes. 2006; 55: 1792-9
|
|
|
16) Takamura T, Honda M, Sakai Y, et al. Gene expression profiles in peripheral blood mononuclear cells reflect the pathophysiology of type 2 diabetes. Biochem Biophys Res Commun. 2007; 361: 379-84
|
|
|
17) Misu H, Takamura T, Matsuzawa N, et al. Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes. Diabetologia. 2007; 50: 268-77
|
|
|
18) Takamura T, Misu H, Matsuzawa-Nagata N, et al. Obesity upregulates genes involved in oxidative phosphorylation in livers of deabetic patients. Obesity (Silver Spring, Md). 2008; Oct 9
|
|
|
19) Takamura T, Misu H, Yamashita T, et al. SAGE application in the study of diabetes. Current Pharmaceutical Biotechnology. 2008; 9: 392-9
|
|
|
20) Pospisilik JA, Knauf C, Joza N, et al. Targeted deletion of AIF decreases mitochondorial oxidative phosphorylation and protects from obesity and diabetes. Cell. 2007; 131: 476-91
|
|
|
21) Bonnard C, Durand A, Peyrol S, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest. 2008; 118: 789-800
|
|
|
22) Organisation for Economic Co-operation and Development (OECD) Health Data. 2007;
|
|
|
23) Ota T, Takamura T, Hirai N, et al. Preobesity in world health organization classification involves the metabolic syndrome in Japanese. Diabetes Care. 2002; 25: 1252-3
|
|
|
24) Ota T, Yamagami T, Sakurai M, et al. Cut-off point of body mass index to detect metabolic abnormality in Japanese. J Japan Society for the Study of Obesity. 2005; 11: 317-22
|
|
|
25) Sakurai M, Takamura T, Ota T, et al. Liver steatosis, but not fibrosis, is associated with insulin resistance in nonalcoholic fatty liver disease. J Gastroenterol. 2007; 42: 312-7
|
|
|
26) Shimano H. SREBP-1c and TFE3, energy transcription factors that regulate hepatic insulin signaling. J Mol Med. 2007; 85: 437-44
|
|
|
27) Matsuzawa-Nagata N, Takamura T, Ando H, et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism: clinical and experimental. 2008; 57: 1071-7
|
|
|
28) Larter CZ, Yeh MM, Haigh WG, et al. Hepatic free fatty acids accumulate in experimental steatohepatitis: Role of adaptive pathways. J Hepatol. 2008; 48: 638-47
|
|
|
29) Malhi H, Bronk SF, Werneburg NW, et al. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem. 2006; 281: 12093-101
|
|
|
30) Wei Y, Wang D, Topczewski F, et al. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab. 2006; 291: E275-81
|
|
|
31) Matsuzaka T, Shimano H, Yahagi N, et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin resistance. Nature medicine. 2007; 13: 1193-202
|
|
|
32) Yamauchi T, Nio Y, Maki T, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Medicine. 2007; 13: 332-9
|
|
|
33) Shimizu A, Takamura T, Matsuzawa N, et al. Regulation of adiponectin receptor expression in human liver and a hepatocyte cell line. Metabolism: Clinical and Experimental. 2007; 56: 1478-85
|
|
|
34) Hevener AL, Olefsky JM, Reichart D, et al. Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest. 2007; 117: 1658-69
|
|
|
35) Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab. 2008; 7: 496-507
|
|
|
36) Uno K, Katagiri H, Yamada T, et al. Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science (New York). 2006; 312: 1656-9
|
|
|
37) Ando H, Yanagihara H, Hayashi Y, et al. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology. 2005; 146: 5631-6
|
|
|
38) Ando H, Oshima Y, Yanagihara H, et al. Profile of rhythmic gene expression in the livers of obese diabetic KK-A(y) mice. Biochem Biophys Res Commun. 2006; 346: 1297-302
|
|
|
39) Ahima RS. Insulin resistance: cause or consequence of nonalcoholic steatohepatitis? Gastroenterology. 2007; 132: 444-6
|
|
|
40) Listenberger LL, Han X, Lewis SE, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A. 2003; 100: 3077-82
|
|
|
41) Yamaguchi K, Yang L, McCall S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007; 45: 1366-74
|
|
|
42) Buettner R, Ottinger I, Scholmerich J, et al. Preserved direct hepatic insulin action in rats with diet-induced hepatic steatosis. Am J Physiol Endocrinol Metab. 2004; 286: E828-33
|
|
|
43) Monetti M, Levin MC, Watt MJ, et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 2007; 6: 69-78
|
|
|
44) Mari M, Caballero F, Colell A, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006; 4: 185-98
|
|
|
45) Matsuzawa N, Takamura T, Kurita S, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology. 2007; 46: 1392-403
|
|
|