1) Maynard AD, et al. Safe handling of nanotechnology. Nature. 2006; 444: 267-9
|
|
|
2) Service RF. Priorities needed for nano-risk research and development. Science. 2006; 314: 45
|
|
|
3) 内山巌雄. わが国の大気汚染: 過去, 現在, 未来. 呼吸器科. 2005; 8: 279-86
|
|
|
4) 吉田 隆. 自動車排出ナノ粒子およびDEPの測定と生体影響評価. In: 高野裕久. 呼吸器・循環器系影響の疫学. 第1版. 東京: NTS; 2005. p. 177-86
|
|
|
5) Schwaltz J. Particulate air pollution and daily mortality in Detroit. Environmental Research. 1991; 56: 204-13
|
|
|
6) Whitby KT. The physical characteristics of sulfur aerosols. Atmos Environ. 1978; 12: 135-59
|
|
|
7) Kittelson DB. Engines and nanoparticles: A review. Journal Aerosol Sci. 1998; 29: 575-88
|
|
|
8) Stone V, Shaw J, Brown DM, et al. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicology in Vitro. 1998; 12: 649-59
|
|
|
9) Li XY, Brown D, Smith S, et al. Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhalation Toxicology. 1999; 11: 709-31
|
|
|
10) Baggs RB, Ferin J, Oberdorster G. Regression of pulmonary lesions produced by inhaled titanium dioxide in rats. Vet Pathol. 1997; 34: 592-7
|
|
|
11) Johnson CJ, Finkelstein JN, Mercer P, et al. Pulmonary effects induced by ultrafine PTFE particles. Toxicol Appl Pharmacol. 2000; 168: 208-15
|
|
|
12) Brown DM, Wilson MR, MacNee W, et al. Size-dependent proinflammatory effects of ultrafine polystyrene particles. A role of surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol. 2001; 175: 191-9
|
|
|
13) Zhang Q, Kusada Y, Zhu X, et al. Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. J Occup Health. 2003; 45: 23-30
|
|
|
14) Driscoll KE, Maurer JK. Cytokine and growth factor release by alveolar macrophages: potential biomarkers of pulmonary toxicity. Toxicol Pathol. 1991; 19: 398-405
|
|
|
15) Lison D, Lardot C, Huaux F, et al. Influence particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch Toxicol. 1997; 71: 725-9
|
|
|
16) Warheit DB, Webb TR, Reed KL, et al. Assessing the pulmonary hazards and health risks of nano(ultrafine)particles and carbon nanotubes: lung toxicity studies in rats and relevance of these findings for humans. Abst. 227th ACS National Meeting. 2004; IEC-019: 6000-8000
|
|
|
17) Xia T, Korge P, Weiss JN, et al. Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity. Environmental Health Perspectives. 2004; 112: 1347-58
|
|
|
18) Chan TL, Lee PS, Hering WE. Deposition and clearance of inhaled diesel exhaust particles in there spiratory tract of Fischer rats. J Appl Toxicol. 1981; 1: 77-82
|
|
|
19) Ferin J, Oberdorster G, Penney DP. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol. 1992; 6: 535-42
|
|
|
20) Stearns RC, Murthy GGK, Skornic W, et al. Detection of ultrafine copper oxide particles in the lungs of hamsters by electron spectroscopic imaging. abst. ICEM. 1994; 13: 763-4
|
|
|
21) Bair WJ. The ICRP human respiratory tract model for radiological protection. Radiation Protection Dosimetry. 1995; 60: 307-10
|
|
|
22) Oberdorster G, Sharp Z, Atudorei V, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicology and Environmental Health. 2002; 65: 1531-43
|
|
|
23) Takenaka S, Karg E, Roth C, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives. 2001; 109: 547-51
|
|
|
24) Oberdorster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology. 2004; 16: 437-45
|
|
|
25) Lademann J, Weigmann H, Rickmeyer C, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol. 1999; 12: 247-56
|
|
|
26) Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives. 2005; 113: 823-39
|
|
|
27) Kreyling WG, Semmler M, Erbe F, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002; 65: 1513-30
|
|
|
28) Semmler M, Seitz J, Erbe F, et al. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhalation Toxicology. 2004; 16: 453-9
|
|
|
29) 平野靖史郎, 菅野さな枝, 古山昭子. ナノ粒子の細胞への取込みと組織透過性. 日本衛生学雑誌. 2007; 62: 410-1
|
|
|
30) Geiser M, Rutishauser BR, Kapp N, et al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental Health Perspectives. 2005; 113: 1555-60
|
|
|
31) Stearns RC, Paulauskis JD, Godleski JJ. Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol. 2001; 24: 108-15
|
|
|
32) Hohr D, Becker A, Albrecht C, et al. Phagocytosis and translocation of surface-modified quartz particles in rat lung cell lines. Microscopy and Microanalysi. 2003; 9: 454-5
|
|
|
33) Kato T, Yashiro T, Murata Y, et al. Evidence that exogenous substances can be phagocytized by alveolar epithelial cells and transported into blood capillaries. Cell and Tissue Research. 2003; 311: 47-51
|
|
|
34) Rejman J, Oberle V, Zuhorn IS, et al. Size dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004; 377: 159-69
|
|
|
35) Kwong K, Lee L. PGE2 sensitizes cultured pulmonary vagal sensory neurons to chemical and electrical stimuli. J Appl Physiol. 2002; 93: 1419-28
|
|
|
36) Hunter DD, Undem BJ. Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am J Respir Crit Care Med. 1999; 159: 1943-8
|
|
|
37) 京野洋子. 粒子形状と生体影響. エアロゾル研究. 1996; 11: 211-7
|
|
|