1) Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006; 24: 1551-7
|
|
|
2) Marr AK, Gooderham WJ, Hancock RE. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol. 2006; 6: 468-72
|
|
|
3) Mookherjee N, Hancock RE. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007; 64: 922-33
|
|
|
4) Lehrer RI. Primate defensins. Nat Rev Microbiol. 2004; 2: 727-38
|
|
|
5) Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005; 6: 551-7
|
|
|
6) Soong LB, Ganz T, Ellison A, et al. Purification and characterization of defensins from cystic fibrosis sputum. Inflamm Res. 1997; 46: 98-102
|
|
|
7) Ashitani J, Mukae H, Nakazato M, et al. Elevated concentrations of defensins in bronchoalveolar lavage fluid in diffuse panbronchiolitis. Eur Respir J. 1998; 11: 104-11
|
|
|
8) Ashitani J, Mukae H, Hiratsuka T, et al. Plasma and BAL fluid concentrations of antimicrobial peptides in patients with Mycobacterium avium-intracellulare infection. Chest. 2001; 119: 1131-7
|
|
|
9) Ashitani J, Mukae H, Hiratsuka T, et al. Elevated levels of alpha-defensins in plasma and BAL fluid of patients with active pulmonary tuberculosis. Chest. 2002; 121: 519-26
|
|
|
10) Hiratsuka T, Mukae H, Iiboshi H, et al. Increased concentrations of human beta-defensins in plasma and bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Thorax. 2003; 58: 425-30
|
|
|
11) Sakamoto N, Mukae H, Fujii T, et al. Differential effects of alpha- and beta- defensin on cytokine production by cultured human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2005; 288: L508-13
|
|
|
12) Yanagi S, Ashitani J, Ishimoto H, et al. Isolation of human beta-defensin-4 in lung tissue and its increase in lower respiratory tract infection. Respir Res. 2005; 6: 130
|
|
|
13) Chen X, Niyonsaba F, Ushio H, et al. Synergistic effect of antibacterial agents human β-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci. 2005; 40: 123-32
|
|
|
14) 迎 寛. デフェンシンと呼吸器感染症. 呼吸. 2007; 27: 24-8
|
|
|
15) Ishimoto H, Mukae H, Date Y, et al. Identification of hBD-3 in respiratory tract and serum: the increase in pneumonia. Eur Respir J. 2006; 27: 253-60
|
|
|
16) Sharma S, Verma I, Khuller GK. Antibacterial activity of human neutrophil peptide-1 against Mycobacterium tuberculosis H37Rv: in vitro and ex vivo study. Eur Respir J. 2000; 16: 112-7
|
|
|
17) Kalita A, Verma I, Khuller GK. Role of human neutrophil peptide-1 as a possible adjunct to antituberculosis chemotherapy. J Infect Dis. 2004; 190: 1476-80
|
|
|
18) Welling MM, Hiemstra PS, van den Barselaar MT, et al. Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumu-lation. J Clin Invest. 1998; 102: 1583-90
|
|
|
19) Moser C, Weiner DJ, Lysenko E, et al. β-defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun. 2002; 70: 3068-72
|
|
|
20) Matsuse H, Yanagihara K, Mukae H, et al. Association of plasma neutrophilelastase levels with other inflammatory mediators and clinical features in adult patients with moderate and severe pneumonia. Respir Med. 2007; 101: 1521-8
|
|
|
21) Goldman MJ, Anderson GM, Stolzenberg ED, et al. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell. 1997; 88: 553-60
|
|
|
22) Matsui H, Grubb BR, Tarran R, et al. Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998; 95: 1005-15
|
|
|
23) Bals R, Weiner DJ, Meegalla RL, et al. Salt-independent abnormality of antimicrobial activity in cystic fibrosis airway surface fluid. Am J Respir Cell Mol Biol. 2001; 25: 21-5
|
|
|
24) Taggart CC, Greene CM, Smith SG, et al. Inactivation of human beta-defensins 2 and 3 by elastolytic cathepsins. J Immunol. 2003; 171: 931-7
|
|
|
25) Klotman ME, Chang TL. Defensins in innate antiviral immunity. Nat Rev Immunol. 2006; 6: 447-56
|
|
|
26) Tecle T, White MR, Gantz D, et al. Human neutrophil defensins increase neutrophil uptake of influenza A virus and bacteria and modify virus-induced respiratory burst responses. J Immunol. 2007; 178: 8046-52
|
|
|
27) Salvatore M, Garcia-Sastre A, Ruchala P, et al. α-defensin inhibits influenza virus replication by cell-mediated mechanism(s). J Infect Dis. 2007; 196: 835-43
|
|
|
28) Hartshorn KL, White MR, Tecle T, et al. Innate defense against influenzae A virus: activity of human neutrophil defensins and interactions of defensins with surfactant protein D. J Immunol. 2006; 176: 6962-72
|
|
|
29) White MR, Tecle T, Crouch EC, et al. Impact of neutrophils on antiviral activity of human bronchoalveolar lavage fluid. Am J Physiol Lung Cell Mol Physiol. 2007; 293: L1293-9
|
|
|
30) Aarbiou J, Verhoosel RM, van Wetering S, et al. Neutrophil defensins enhance lung epithelial wound closure and mucin gene expression in vitro. Am J Respir Cell Mol Biol. 2004; 30: 193-201
|
|
|
31) Yoshioka S, Mukae H, Ishii H, et al. Alpha-defensin enhances expression of HSP47 and collagen-1 in human lung fibroblasts. Life Sci. 2007; 80: 1839-45
|
|
|
32) Mukae H, Iiboshi H, Nakazato M, et al. Raised plasma concentrations of alpha-defensins in patients with idiopathic pulmonary fibrosis. Thorax. 2002; 57: 623-8
|
|
|
33) Ashitani J, Mukae H, Arimura Y, et al. High concentrations of alpha-defensins in plasma and bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome. Life Sci. 2004; 75: 1123-34
|
|
|
34) Mygind PH, Fischer RL, Schnorr KM, et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature. 2005; 437: 975-80
|
|
|
35) Hara S, Mukae H, Sakamoto N, et al. Plectasin has antibacterial activity and no affect on cell viability or IL-8 production. Biochem Biophys Res Commun. 2008; 374: 709-13
|
|
|
36) Zhu S. Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSαβ defensins. Mol Immunol. 2008; 45: 828-38
|
|
|
37) Thevissen K, Kristensen HH, Thomma BP, et al. Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today. 2007; 12: 966-71
|
|
|