1) Pemberton S, Lindley P, Zaitsev V, et al. A molecular model for the triplicated A domains of human factor VIII based on the crystal structure of human ceruloplasmin. Blood. 1997; 89: 2413-21
|
|
|
2) Pratt KP, Shen BW, Takeshima K, et al. Structure of the C2 domain of human factor VIII at 1. 5 A resolution. Nature. 1999; 402: 439-42
|
|
|
3) Wakabayashi H, Koszelak ME, Mastri M, et al. Metal ion-independent association of factor VIII subunits and the roles of calcium and copper ions for cofactor activity and inter-subunit affinity. Biochemistry. 2001; 40: 10293-300
|
|
|
4) Ansong C, Fay PJ. Factor VIII A3 domain residues 1954-1961 represent an A1 domain-interactive site. Biochemistry. 2005; 44: 8850-7
|
|
|
5) Ansong C, Miles SM, Fay PJ. Factor VIII A1 domain residues 97-105 represent a light chain-interactive site. Biochemistry. 2006; 45: 13140-9
|
|
|
6) Fay PJ. Reconstitution of human factor VIII from isolated subunits. Arch Biochem Biophys. 1988; 262: 525-31
|
|
|
7) Wakabayashi H, Freas J, Zhou Q, et al. Residues 110-126 in the A1 domain of factor VIII contain a Ca2+ binding site required for cofactor activity. J Biol Chem. 2004; 279: 12677-84
|
|
|
8) Fay PJ. Activation of factor VIII and mechanisms of cofactor action. Blood Rev. 2004; 18: 1-15
|
|
|
9) Nogami K, Shima M, Hosokawa K, et al. Role of factor VIII C2 domain in factor VIII binding to factor Xa. J Biol Chem. 1999; 274: 31000-7
|
|
|
10) Nogami K, Shima M, Hosokawa K, et al. Factor VIII C2 domain contains the thrombin-binding site responsible for thrombin-catalyzed cleavage at Arg1689. J Biol Chem. 2000; 275: 25774-80
|
|
|
11) Nogami K, Saenko EL, Takeyama M, et al. Identification of a thrombin-interactive site within the FVIII A2 domain that is responsible for the cleavage at Arg372. Br J Haematol. 2008; 140: 433-43
|
|
|
12) Nogami K, Zhou Q, Myles T, et al. Exosite-interactive regions in the A1 and A2 domains of factor VIII facilitate thrombin-catalyzed cleavage of heavy chain. J Biol Chem. 2005; 280: 18476-87
|
|
|
13) Nogami K, Lapan KA, Zhou Q, et al. Identification of a factor Xa-interactive site within residues 337-372 of the factor VIII heavy chain. J Biol Chem. 2004; 279: 15763-71
|
|
|
14) Eaton D, Rodriguez H, Vehar GA. Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry. 1986; 25: 505-12
|
|
|
15) Nogami K, Wakabayashi H, Fay PJ. Mechanisms of factor Xa-catalyzed cleavage of the factor VIIIa A1 subunit resulting in cofactor inactivation. J Biol Chem. 2003; 278: 16502-9
|
|
|
16) Nogami K, Shima M, Matsumoto T, et al. Mechanisms of plasmin-catalyzed inactivation of factor VIII: a crucial role for proteolytic cleavage at Arg336 responsible for plasmin-catalyzed factor VIII inactivation. J Biol Chem. 2007; 282: 5287-95
|
|
|
17) Leyte A, Verbeet MP, Brodniewicz-Proba T, et al. The interaction between human blood coagulation factor VIII and von Willebrand factor. Characterization of a high-affinity binding site on factor VIII. Biochem J. 1989; 257: 679-83
|
|
|
18) Saenko EL, Shima M, Rajalakshmi KJ, et al. A role for the C2 domain of factor VIII in binding to von Willebrand factor. J Biol Chem. 1994; 269: 11601-5
|
|
|
19) Jacquemin M, Benhida A, Peerlinck K, et al. A human antibody directed to the factor VIII C1 domain inhibits factor VIII cofactor activity and binding to von Willebrand factor. Blood. 2000; 95: 156-63
|
|
|
20) Pittman DD, Wang JH, Kaufman RJ. Identification and functional importance of tyrosine sulfate residues within recombinant factor VIII. Biochemistry. 1992; 31: 3315-25
|
|
|
21) Nogami K, Freas J, Manithody C, et al. Mechanisms of interactions of factor X and factor Xa with the acidic region in the factor VIII A1 domain. J Biol Chem. 2004; 279: 33104-13
|
|
|
22) Bovenschen N, van Stempvoort G, Voorberg J, et al. Proteolytic cleavage of factor VIII heavy chain is required to expose the binding-site for low-density lipoprotein receptor-related protein within the A2 domain. J Thromb Haemost. 2006; 4: 1487-93
|
|
|
23) Naylor JA, Nicholson P, Goodeve Anne, et al. A novel DNA inversion causing severe hemophilia A. Blood. 1996; 87: 3255-61
|
|
|
24) Antonarakis SE, Rossiter JP, Young M, et al. Factor VIII gene inversions in severe hemophilia A: results of an international consortium study. Blood. 1995; 86: 2206-12
|
|
|
25) Arai M, Inaba H, Higuchi M, et al. Direct characterization of factor VIII in plasma: detection of a mutation altering a thrombin cleavage site (arginine-372-histidine). Proc Natl Acad Sci U S A. 1989; 86: 4277-81
|
|
|
26) Shima M, Ware J, Yoshioka A, et al. An arginine to cysteine amino acid substitution at a critical thrombin cleavage site in a dysfunctional factor VIII molecule. Blood. 1989; 74: 1612-7
|
|
|
27) Nogami K, Zhou Q, Wakabayashi H, et al. Thrombin-catalyzed activation of factor VIII with His substituted for Arg372 at the P1 site. Blood. 2005; 105: 4362-8
|
|
|
28) Liu ML, Shen BW, Nakaya S, et al. Hemophilic factor VIII C1- and C2-domain missense mutations and their modeling to the 1. 5-angstrom human C2-domain crystal structure. Blood. 2000; 96: 979-87
|
|
|
29) d'Oiron R, Lavergne JM, Lavend'homme R, et al. Deletion of alanine 2201 in the FVIII C2 domain results in mild hemophilia A by impairing FVIII binding to VWF and phospholipids and destroys a major FVIII antigenic determinant involved in inhibitor development. Blood. 2004; 103: 155-7
|
|
|
30) Aly AM, Higuchi M, Kasper CK, et al. Hemophilia A due to mutations that create new N-glycosylation sites. Proc Natl Acad Sci U S A. 1992; 89: 4933-7
|
|
|
31) Pipe SW, Kaufman RJ. Factor VIII C2 domain missense mutations exhibit defective trafficking of biologically functional proteins. J Biol Chem. 1996; 271: 25671-6
|
|
|
32) Pipe SW, Eickhorst AN, McKinley SH, et al. Mild hemophilia A caused by increased rate of factor VIII A2 subunit dissociation: evidence for nonproteolytic inactivation of factor VIIIa in vivo. Blood. 1999; 93: 176-83
|
|
|
33) Jenkins PV, Freas J, Schmidt KM, et al. Mutations associated with hemophilia A in the 558-565 loop of the factor VIIIa A2 subunit alter the catalytic activity of the factor Xase complex. Blood. 2002; 100: 501-8
|
|
|
34) Stoilova-McPhie S, Villoutreix BO, Mertens K, et al. 3-dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by electron crystallography. Blood. 2002; 99: 1215-23
|
|
|