1) Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951; 6: 372-5
|
|
|
2) Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005; 365: 1054-61
|
|
|
3) James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005; 434: 1144-8
|
|
|
4) Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005; 352: 1779-90
|
|
|
5) Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005; 7: 387-97
|
|
|
6) Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006; 3: e270
|
|
|
7) Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007; 356: 459-68
|
|
|
8) Delhommeau F, Dupont S, Tonetti C, et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood. 2007; 109: 71-7
|
|
|
9) Larsen TS, Christensen JH, Hasselbalch HC, et al. The JAK2 V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol. 2007; 136: 745-51
|
|
|
10) Ishii T, Bruno E, Hoffman R, et al. Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood. 2006; 108: 3128-34
|
|
|
11) Li S, Kralovics R, De Libero G, et al. Clonal heterogeneity in polycythemia vera patients with JAK2 exon12 and JAK2-V617F mutations. Blood. 2008; 111: 3863-6
|
|
|
12) Bogani C, Guglielmelli P, Antonioli E, et al. B-, T-, and NK-cell lineage involvement in JAK2V617F-positive patients with idiopathic myelofibrosis. Haematologica. 2007; 92: 258-9
|
|
|
13) Chaligne R, James C, Tonetti C, et al. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood. 2007; 110: 3735-43
|
|
|
14) Hu WY, Zhao Y, Ishii T, et al. Haematopoietic cell lineage distribution of MPLW515L/K mutations in patients with idiopathic myelofibrosis. Br J Haematol. 2007; 137: 378-9
|
|
|
15) Jamieson CHM, Gotlib J, Durocher JA, et al. The JAK2V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. PNAS. 2006; 103: 6224-9
|
|
|
16) Ishii T, Zhao Y, Sozer S, et al. Behavior of CD34+ cells isolated from patients with polycythemia vera in NOD/SCID mice. Exp Hematol. 2007; 35: 1633-40
|
|
|
17) James C, Mazurier F, Dupont S, et al. The hematopoietic stem cell compartment of JAK2V617F positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood. 2008; 112: 2429-38
|
|
|
18) Van Pelt K, Nollet F, Selleslag D, et al. The JAK2V617F mutation can occur in a hematopoietic stem cell that exhibits no proliferative advantage: a case of human allogeneic transplantation. Blood. 2008; 112: 921-2
|
|
|
19) Lu X, Levine R, Tong W, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci U S A. 2005; 102: 18962-7
|
|
|
20) Wernig G, Gonneville JR, Crowley BJ, et al. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood. 2008; 111: 3751-9
|
|
|
21) Constantinescu SN, Girardot M, Pecquet C. Mining for JAK-STAT mutations in cancer. Trends Biochem Sci. 2008; 33: 122-31
|
|
|
22) Halupa A, Bailey ML, Huang K, et al. A novel role for STAT1 in regulating murine erythropoiesis: deletion of STAT1 results in overall reduction of erythroid progenitors and alters their distribution. Blood. 2005; 105: 552-61
|
|
|
23) Huang Z, Richmond TD, Muntean AG, et al. STAT1 promotes megakaryopoiesis downstream of GATA-1 in mice. J Clin Invest. 2007; 117: 3890-9
|
|
|
24) Kirito K, Osawa M, Morita H, et al. A functional role of Stat3 in in vivo megakaryopoiesis. Blood. 2002; 99: 3220-7
|
|
|
25) Socolovsky M, Fallon AE, Wang S, et al. Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell. 1999; 98: 181-91
|
|
|
26) Grebien F, Kerenyi MA, Kovacic B, et al. Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood. 2008; 111: 4511-22
|
|
|
27) Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006; 108: 1652-60
|
|
|
28) Wernig G, Mercher T, Okabe R, et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood. 2006; 107: 4274-81
|
|
|
29) Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2V617F. PLoS ONE. 2006; 1: e18
|
|
|
30) Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis of polycythemia induced in mice by JAK2 V617F. ASH Annual Meeting Abstracts. 2005; 106: 116
|
|
|
31) Roder S, Steimle C, Meinhardt G, et al. STAT3 is constitutively active in some patients with polycythemia rubra vera. Exp Hematol. 2001; 29: 694-702
|
|
|
32) Schwemmers S, Will B, Waller CF, et al. JAK2V617F-negative ET patients do not display constitutively active JAK/STAT signaling. Exp Hematol. 2007; 35: 1695-703
|
|
|
33) Mesa RA, Tefferi A, Lasho TS, et al. Janus kinase 2 (V617F) mutation status, signal transducer and activator of transcription-3 phosphorylation and impaired neutrophil apoptosis in myelofibrosis with myeloid metaplasia. Leukemia. 2006; 20: 1800-8
|
|
|
34) Teofili L, Martini M, Cenci T, et al. Different STAT-3 and STAT-5 phosphorylation discriminates among Ph-negative chronic myeloproliferative diseases and is independent of the V617F JAK-2 mutation. Blood. 2007; 110: 354-9
|
|
|
35) Aboudola S, Murugesan G, Szpurka H, et al. Bone marrow phospho-STAT5 expression in non-CML chronic myeloproliferative disorders correlates with JAK2 V617F mutation and provides evidence of in vivo JAK2 activation. Am J Surg Pathol. 2007; 31: 233-9
|
|
|
36) Gibson SE, Schade AE, Szpurka H, et al. Phospho-STAT5 expression pattern with the MPL W515L mutation is similar to that seen in chronic myeloproliferative disorders with JAK2 V617F. Hum Pathol. 2008; 39: 1111-4
|
|
|
37) Silva M, Benito A, Sanz C, et al. Erythropoietin can induce the expression of Bcl-xL through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem. 1999; 274: 22165-9
|
|
|
38) Zhu BM, McLaughlin SK, Na R, et al. Hematopoietic-specific Stat5-null mice display microcytic hypochromic anemia associated with reduced transferrin receptor gene expression. Blood. 2008; 112: 2071-80
|
|
|
39) Kerenyi MA, Grebien F, Gehart H, et al. Stat 5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1. Blood. 2008; 112: 3878-88
|
|
|
40) Silva M, Richard C, Benito A, et al. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med. 1998; 338: 564-71
|
|
|
41) Tong H, Ren Y, Zhang F, et al. Homoharringtonine affects the JAK2-STAT5 signal pathway through alteration of protein tyrosine kinase phosphorylation in acute myeloid leukemia cells. Eur J Haematol. 2008; 81: 259-66
|
|
|
42) Zeuner A, Pedini F, Signore, et al. Increased death receptor resistance and FLIP short expression in polycythemia vera erythroid precursor cells. Blood. 2006; 107: 3495-502
|
|
|
43) Wormald S, Hilton DJ. Inhibitors of cytokine signal transduction. J Biol Chem. 2004; 279: 821-4
|
|
|
44) Marine JC, McKay C, Wang D, et al. SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell. 1999; 98: 617-27
|
|
|
45) Hookham MB, Elliott J, Suessmuth Y, et al. The myeloproliferative disorder-associated JAK2 V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood. 2007; 109: 4924-9
|
|
|
46) Teofili L, Martini M, Cenci T, et al. Epigenetic alteration of SOCS family members is a possible pathogenetic mechanism in JAK2 wild type myeloproliferative diseases. Int J Cancer. 2008; 123: 1586-92
|
|
|
47) Tong W, Lodish HF. Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med. 2004; 200: 569-80
|
|
|
48) Tong W, Zhang J, Lodish HF. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood. 2005; 105: 4604-12
|
|
|
49) Seita J, Ema H, Ooehara J, et al. Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proc Natl Acad Sci U S A. 2007; 104: 2349-54
|
|
|
50) Bersenev A, Wu C, Balcerek J, et al. Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. J Clin Invest. 2008; 118: 2832-44
|
|
|
51) Gery S, Gueller S, Chumakova K, et al. Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders. Blood. 2007; 110: 3360-4
|
|
|
52) Theocharides A, Boissinot M, Girodon F, et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood. 2007; 110: 375-9
|
|
|
53) Kralovics R, Teo SS, Li S, et al. Acquisition of the V617F mutation of JAK2 is a late genetic event in a subset of patients with myeloproliferative disorders. Blood. 2006; 108: 1377-80
|
|
|
54) Pardanani A, Fridley BL, Lasho TL, et al. Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood. 2008; 111: 2785-9
|
|
|
55) Gondek LP, Dunbar AJ, Szpurka H, et al. SNP array karyotyping allows for the detection of uniparental disomy and cryptic chromosomal abnormalities in MDS/MPD-U and MPD. PLoS ONE. 2007; 2: e1225
|
|
|
56) Borze I, Mustjokio S, Juvonen E, et al. Oligoarray comparative genomic hybridization in polycythemia vera and essential thrombocythemia. Haematologica. 2008; 93: 1098-100
|
|
|
57) Plo I, Nakatake M, Malivert L, et al. JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood. 2008; 112: 1402-12
|
|
|
58) Bruchova H, Yoon D, Agarwal AM, et al. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol. 2007; 35: 1657-67
|
|
|
59) Guglielmelli P, Tozzi L, Pancrazzi A, et al. MicroRNA expression profile in granulocytes from primary myelofibrosis patients. Exp Hematol. 2007; 35: 1708-18
|
|
|
60) Bruchova H, Merkerova M, Prchal JT. Aberrant expression of microRNA in polycythemia vera. Haematologica. 2008; 93: 1009-16
|
|
|
61) Lu J, Guo S, Ebert BL, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell. 2008; 14: 843-53
|
|
|
62) Campbell PJ, Scott LM, Buck G, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet. 2005; 366: 1945-53
|
|
|
63) Xing S, Wanting TH, Zhao W, et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood. 2008; 111: 5109-17
|
|
|
64) Tiedt R, Hao-Shen H, Sobas MA, et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008; 111: 3931-40
|
|
|
65) Shide K, Shimoda HK, Kumano T, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia. 2008; 22: 87-95
|
|
|