1) Wollert KC. Cell therapy for acute myocardial infarction. Curr Opin Pharmacol. 2008; 8: 202-10
|
|
|
2) Passier R, van Laake LW, Mummery CL. Stem-cell-based therapy and lessons from the heart. Nature. 2008; 453: 322-9
|
|
|
3) Menasche P. Current status and future prospects for cell transplantation to prevent congestive heart failure. Semin Thorac Cardiovasc Surg. 2008; 20: 131-7
|
|
|
4) Martin-Rendon E, Brunskill SJ, Hyde CJ, et al. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur Heart J. 2008; 29: 1807-18
|
|
|
5) Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004; 428: 664-8
|
|
|
6) Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004; 428: 668-73
|
|
|
7) Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001; 33: 907-21
|
|
|
8) Hofmann M, Wollert KC, Meyer GP, et al. Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation. 2005; 111: 2198-202
|
|
|
9) Shimizu T, Yamato M, Kikuchi A, et al. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials. 2003; 24: 2309-16
|
|
|
10) Yang J, Yamato M, Shimizu T, et al. Reconstruction of functional tissues with cell sheet engineering. Biomaterials. 2007; 28: 5033-43
|
|
|
11) Sekine H, Shimizu T, Kosaka S, et al. Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J Heart Lung Transplant. 2006; 25: 324-32
|
|
|
12) Miyagawa S, Sawa Y, Sakakida S, et al. Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation. 2005; 80: 1586-95
|
|
|
13) Memon IA, Sawa Y, Fukushima N, et al. Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg. 2005; 130: 1333-41
|
|
|
14) Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med. 2006; 12: 459-65
|
|
|
15) Hida N, Nishiyama N, Miyoshi S, et al. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells. 2008; 26: 1695-704
|
|
|
16) Kondoh H, Sawa Y, Miyagawa S, et al. Implantation of Tissue-Engineered myoblast sheet improves cardiac performance with attenuation of cardiac remodeling in cardiomyopathic hamsters. Cardiovasc Res. 2006; 69: 466-75
|
|
|
17) Hata H, Matsumiya G, Miyagawa S, et al. Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg. 2006; 132: 918-24
|
|
|
18) Kobayashi H, Shimizu T, Yamato M, et al. Fibroblast sheets co-cultured with endothelial progenitor cells improve cardiac function of infracted hearts. J Artif Organs. 2008. In press
|
|
|
19) Sekine H, Shimizu T, Hobo K, et al. Endothelial cell coculture within tissue-engineered cardimyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation. 2008. In press
|
|
|
20) Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med. 2008; 14: 213-21
|
|
|
21) Zimmermann WH, Melnychenko I, Wasmeier G, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med. 2006; 12: 452-8
|
|
|
22) Masuda S, Shimizu T, Yamato M, et al. Cell sheet engineering for heart tissue repair. Adv Drug Deliv Rev. 2008; 60: 277-85
|
|
|
23) Haraguchi Y, Shimizu T, Yamato M, et al. Electrical coupling of cardiomyocyte sheets occurs rapidly via functional gap junction formation. Biomaterials. 2006; 27: 4765-74
|
|
|
24) Shimizu T, Yamato M, Isoi Y, et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res. 2002; 90: e40-8
|
|
|
25) Shimizu T, Sekine H, Isoi Y, et al. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 2006; 12: 499-507
|
|
|
26) Sekiya S, Shimizu T, Yamato M, et al. Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. J Biochem Biophysic Res Commun. 2006; 341: 573-82
|
|
|
27) Shimizu T, Sekine H, Yang J, et al. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. Faseb J. 2006; 20: 708-10
|
|
|
28) Sekine H, Shimizu T, Yang J, et al. Pulsatile myocardial tubes fabricated with cell sheet engineering. Circulation. 2006; 114: I87-93
|
|
|
29) Kubo H, Shimizu T, Yamato M, et al. Creation of myocardial tubes using cardiomyocyte sheets and an in vitro cell sheet-wrapping device. Biomaterials. 2007; 28: 3508-16
|
|
|