1) Romero MF, Hediger MA, Boulpaep EL, et al. Expression cloning and characterization of a renal electrogenic Na+/HCO3− cotransporter. Nature. 1997; 387: 409-13
|
|
|
2) Chang MH, DiPiero J, Sonnichsen FD, Romero MF. Entry to“formula tunnel"revealed by SLC4A4 human mutation and structural model. J Biol Chem. 2008; 283: 18402-10
|
|
|
3) Abuladze N, Song M, Pushkin A, et al. Structural organization of the human NBC1 gene: kNBC1 is transcribed from an alternative promoter in intron 3. Gene. 2000; 251: 109-22
|
|
|
4) Li HC, Li EY, Soleimani M, et al. Identification of a novel signal in the cytoplasmic tail of the Na+: HCO3− cotransporter NBC1 that mediates basolateral targeting. Am J Physiol Renal Physiol. 2007; 292: F1245-55
|
|
|
5) Seki G, Van Paesschen W, Horita S, et al. A NBC1 mutation causing proximal renal tubular acidosis and hemiplegic migraine. J Am Soc Nephrol. 2007; 18: 588A
|
|
|
6) Majumdar D, Maunsbach AB, Shacka JJ, et al. Localization of electrogenic Na/bicarbonate cotransporter NBCe1 variants in rat brain. Neuroscience. 2008; 155: 818-32
|
|
|
7) Igarashi T, Inatomi J, Sekine T, et al. Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet. 1999; 23: 264-6
|
|
|
8) Igarashi T, Inatomi J, Sekine T, et al. Novel nonsense mutation in the Na+/HCO3− cotransporter gene (SLC4A4) in a patient with permanent isolated proximal renal tubular acidosis and bilateral glaucoma. J Am Soc Nephrol. 2001; 12: 713-8
|
|
|
9) Inatomi J, Horita S, Braverman N, et al. Mutational and functional analysis of SLC4A4 in a patient with proximal renal tubular acidosis. Pflugers Arch. 2004; 448: 438-44
|
|
|
10) Dinour D, Chang MH, Satoh J, et al. A novel missense mutation in the sodium bicarbonate cotransporter (NBCe1/SLC4A4) causes proximal tubular acidosis and glaucoma through ion transport defects. J Biol Chem. 2004; 279: 52238-46
|
|
|
11) Horita S, Yamada H, Inatomi J, et al. Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities. J Am Soc Nephrol. 2005; 16: 2270-8
|
|
|
12) Suzuki M, Vaisbich MH, Yamada H, et al. Functional analysis of a novel missense NBC1 mutation and of other mutations causing proximal renal tubular acidosis. Pflugers Arch. 2008; 455: 583-93
|
|
|
13) Demirci FY, Chang MH, Mah TS, et al. Proximal renal tubular acidosis and ocular pathology: a novel missense mutation in the gene (SLC4A4) for sodium bicarbonate cotransporter protein (NBCe1). Mol Vis. 2006; 12: 324-30
|
|
|
14) Li HC, Szigligeti P, Worrell RT, et al. Missense mutations in Na+: HCO3− cotransporter NBC1 show abnormal trafficking in polarized kidney cells: a basis of proximal renal tubular acidosis. Am J Physiol Renal Physiol. 2005; 289: F61-71
|
|
|
15) Toye AM, Parker MD, Daly CM, et al. The human NBCe1-A mutant R881C, associated with proximal renal tubular acidosis, retains function but is mistargeted in polarized renal epithelia. Am J Physiol Cell Physiol. 2006; 291: C788-801
|
|
|
16) Usui T, Hara M, Satoh H, et al. Molecular basis of ocular abnormalities associated with proximal renal tubular acidosis. J Clin Invest. 2001; 108: 107-15
|
|
|
17) Bok D, Schibler MJ, Pushkin A, et al. Immunolocalization of electrogenic sodium-bicarbonate cotransporters pNBC1 and kNBC1 in the rat eye. Am J Physiol Renal Physiol. 2001; 281: F920-35
|
|
|
18) Gawenis LR, Bradford EM, Prasad V, et al. Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 Na+/HCO3− cotransporter. J Biol Chem. 2007; 282: 9042-52
|
|
|
19) Azimov R, Abuladze N, Sassani P, et al. G418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis. Am J Physiol Renal Physiol. 2008; 295: F633-41
|
|
|
20) Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007; 447: 87-91
|
|
|
21) Ando H, Mizutani A, Matsu-ura T, et al. IRBIT, a novel inositol 1, 4, 5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem. 2003; 278: 10602-12
|
|
|
22) Mikoshiba K. IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem. 2007; 102: 1426-46
|
|
|
23) Ando H, Mizutani A, Kiefer H, et al. IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell. 2006; 22: 795-806
|
|
|
24) Shirakabe K, Priori G, Yamada H, et al. IRBIT, an inositol 1, 4, 5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type Na+/HCO3− cotransporter 1 (pNBC1). Proc Natl Acad Sci U S A. 2006; 103: 9542-7
|
|
|
25) Sterling D, Reithmeier RA, Casey JR. A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem. 2001; 276: 47886-94
|
|
|
26) Yang Z, Alvarez BV, Chakarova C, et al. Mutant carbonic anhydrase 4 impairs pH regulation and causes retinal photoreceptor degeneration. Hum Mol Genet. 2005; 14: 255-65
|
|
|
27) Lu J, Daly CM, Parker MD, et al. Effect of human carbonic anhydrase II on the activity of the human electrogenic Na/HCO3 cotransporter NBCe1-A in Xenopus oocytes. J Biol Chem. 2006; 281: 19241-50
|
|
|
28) Yoshitomi K, Burckhardt BC, Fromter E. Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule. Pflugers Arch. 1985; 405: 360-6
|
|
|
29) Steward MC, Ishiguro H, Case RM. Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol. 2005; 67: 377-409
|
|
|
30) Muller-Berger S, Samarzija I, Kunimi M, et al. A stop-flow microperfusion technique for rapid determination of HCO3− absorption/H+ secretion by isolated renal tubules. Pflugers Arch. 1999; 439: 208-15
|
|
|
31) Kunimi M, Muller-Berger S, Hara C, et al. Incubation in tissue culture media allows isolated rabbit proximal tubules to regain in-vivo-like transport function: response of HCO3−absorption to norepinephrine. Pflugers Arch. 2000; 440: 908-17
|
|
|
32) Gross E, Hawkins K, Abuladze N, et al. The stoichiometry of the electrogenic sodium bicarbonate cotransporter NBC1 is cell-type dependent. J Physiol. 2001; 531: 597-603
|
|
|
33) Heyer M, Muller-Berger S, Romero MF, et al. Stoichiometry of the rat kidney Na+HCO3− cotransporter expressed in Xenopus laevis oocytes. Pflugers Arch. 1999; 438: 322-9
|
|
|
34) McAlear SD, Liu X, Williams JB, et al. Electrogenic Na/HCO3 cotransporter (NBCe1) variants expressed in Xenopus oocytes: functional comparison and roles of the amino and carboxy termini. J Gen Physiol. 2006; 127: 639-58
|
|
|
35) Gross E, Hawkins K, Pushkin A, et al. Phosphorylation of Ser(982) in the sodium bicarbonate cotransporter kNBC1 shifts the HCO3−: Na+ stoichiometry from 3: 1 to 2: 1 in murine proximal tubule cells. J Physiol. 2001; 537: 659-65
|
|
|
36) Muller-Berger S, Ducoudret O, Diakov A, et al. The renal Na-HCO3−cotransporter expressed in Xenopus laevis oocytes: change in stoichiometry in response to elevation of cytosolic Ca2+ concentration. Pflugers Arch. 2001; 442: 718-28
|
|
|