1) Kobori H, Nangaku M, Navar LG, et al. The intrarenal renin-angiotensin system: from physiology to the pathophysiology of hypertension and kidney disease. Pharmacol Review. 2007; 59: 251-87
|
|
|
2) Nishiyama A, Seth DM, Navar LG. AT1 receptor-mediated accumulation of renal interstitial angiotensin II in angiotensin II-induced hypertensive rats. J Hypertens. 2003; 21: 1897-903
|
|
|
3) Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension. 2002; 39: 129-34
|
|
|
4) Navar LG, Nishiyama A. Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens. 2004; 13: 107-15
|
|
|
5) Kobori H, Prieto-Carrasquero MC, Ozawa Y, et al. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II-dependent hypertension. Hypertension. 2004; 43: 1126-32
|
|
|
6) Zhuo JL, Imig JD, Hammond TG, et al. Ang II accumulation in rat renal endosomes during Ang II-induced hypertension: role of AT(1) receptor. Hypertension. 2002; 39: 116-21
|
|
|
7) Gonzalez-Villalobos R, Klassen RB, Allen PL, et al. Megalin binds and internalizes angiotensin II. Am J Physiol Renal Physiol. 2005; 288: F420-7
|
|
|
8) Prieto-Carrasquero MC, Kobori H, Ozawa Y, et al. AT1 receptor-mediated enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Am J Physiol Renal Physiol. 2005; 289: F632-7
|
|
|
9) Prieto-Carrasquero MC, Botros FT, Pagan J, et al. Collecting duct renin is upregulated in both kidneys of 2-kidney, 1-clip goldblatt hypertensive rats. Hypertension. 2008; 51: 1590-6
|
|
|
10) Kang JJ, Toma I, Sipos A, et al. The collecting duct is the major source of prorenin in diabetes. Hypertension. 2008; 51: 1597-604
|
|
|
11) Nagai Y, Yao L, Kobori H, et al. Temporary angiotensin blockade at the prediabetic stage attenuates the development of renal injury in type 2 diabetic rats. J Am Soc Nephrol. 2005; 16: 703-11
|
|
|
12) Zandbergen AA, Baggen MG, Lamberts SW, et al. Effect of losartan on microalbuminuria in normotensive patients with type 2 diabetes mellitus. A randomized clinical trial. Ann Intern Med. 2003; 139: 90-6
|
|
|
13) Kobori H, Nishiyama A, Abe Y, et al. Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension. 2003; 41: 592-7
|
|
|
14) Tojo A, Onozato ML, Kobayashi N, et al. Angiotensin II and oxidative stress in Dahl Salt-sensitive rat with heart failure. Hypertension. 2002; 40: 834-9
|
|
|
15) Kobori H, Ozawa Y, Suzaki Y, et al. Enhanced intrarenal angiotensinogen contributes to early renal injury in spontaneously hypertensive rats. J Am Soc Nephrol. 2005; 16: 2073-80
|
|
|
16) Ichihara A, Hayashi M, Kaneshiro Y, et al. Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle" region for non-proteolytic activation of prorenin. J Clin Invest. 2004; 114: 1128-35
|
|
|
17) El-Dahr SS, Gee J, Dipp S, et al. Upregulation of renin-angiotensin system and downregulation of kallikrein in obstructive nephropathy. Am J Physiol. 1993; 264: F874-81
|
|
|
18) Yoo KH, Norwood VF, El-Dahr SS, et al. Regulation of angiotensin II AT1 and AT2 receptors in neonatal ureteral obstruction. Am J Physiol. 1997; 273: R503-9
|
|
|
19) Sugiyama H, Kobayashi M, Wang DH, et al. Telmisartan inhibits both oxidative stress and renal fibrosis after unilateral ureteral obstruction in acatalasemic mice. Nephrol Dial Transplant. 2005; 20: 2670-80
|
|
|
20) El Chaar M, Chen J, Seshan SV, et al. Effect of combination therapy with enalapril and the TGF-beta antagonist 1D11 in unilateral ureteral obstruction. Am J Physiol Renal Physiol. 2007; 292: F1291-301
|
|
|
21) Fern RJ, Yesko CM, Thornhill BA, et al. Reduced angiotensinogen expression attenuates renal interstitial fibrosis in obstructive nephropathy in mice. J Clin Invest. 1999; 103: 39-46
|
|
|
22) Satoh M, Kashihara N, Yamasaki Y, et al. Renal interstitial fibrosis is reduced in angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol. 2001; 12: 317-25
|
|
|
23) Fan YY, Kohno M, Fujisawa Y, et al. The role of chymase in angiotensin II formation and progression of fibrosis in obstructed kidneys. Hypertension. 2007; 50: e140
|
|
|
24) Esteban V, Lorenzo O, Ruperez M, et al. Angiotensin II, via AT1 and AT2 receptors and NF-kappaB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol. 2004; 15: 1514-29
|
|
|
25) Wolf G, Ziyadeh FN, Thaiss F, et al. Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor. J Clin Invest. 1997; 100: 1047-58
|
|
|
26) Ma J, Nishimura H, Fogo A, et al. Accelerated fibrosis and collagen deposition develop in the renal interstitium of angiotensin type 2 receptor null mutant mice during ureteral obstruction. Kidney Int. 1998; 53: 937-44
|
|
|
27) Cao Z, Bonnet F, Candido R, et al. Angiotensin type 2 receptor antagonism confers renal protection in a rat model of progressive renal injury. J Am Soc Nephrol. 2002; 13: 1773-1787
|
|
|
28) Morrissey JJ, Klahr S. Effect of AT2 receptor blockade on the pathogenesis of renal fibrosis. Am J Physiol Renal Physiol. 1999; 276: F39-45
|
|
|
29) Huang Y, Wongamorntham S, Kasting J, et al. Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int. 2006; 69: 105-13
|
|
|
30) Lavoie JL, Lake-Bruse KD, Sigmund CD. Increased blood pressure in transgenic mice expressing both human renin and angiotensinogen in the renal proximal tubule. Am J Physiol Renal Physiol. 2004; 286: F965-71
|
|
|
31) Kobori H, Ozawa Y, Satou R, et al. Kidney-specific enhancement of ANG II stimulates endogenous intrarenal angiotensinogen in gene-targeted mice. Am J Physiol Renal Physiol. 2007; 293: F938-45
|
|
|
32) Huang W, Xu C, Kahng KW, et al. Aldosterone and TGF-{beta}1 synergistically increase PAI-1 and decrease matrix degradation in rat renal mesangial and fibroblast cells. Am J Physiol Renal Physiol. 2008; 294: F1287-95
|
|
|
33) Nagai Y, Miyata K, Sun GP, et al. Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1/2 in rat renal fibroblasts. Hypertension. 2005; 46: 1039-45
|
|
|
34) Zhang A, Jia Z, Xiaohua X, et al. Aldosterone induces epithelial-mesenchymal transition via ROS of mitochondrial origin. Am J Physiol Renal Physiol. 2007; 293: F723-31
|
|
|
35) Wolf G, Ziyadeh FN, Zahner G, et al. Angiotensin II-stimulated expression of transforming growth factor beta in renal proximal tubular cells: attenuation after stable transfection with the c-mas oncogene. Kidney Int. 1995; 48: 1818-27
|
|
|
36) Wolf G, Ziyadeh FN, Stahl RA. Angiotensin II stimulates expression of transforming growth factor beta receptor type II in cultured mouse proximal tubular cells. J Mol Med. 1999; 77: 556-64
|
|
|
37) Wolf G, Mueller E, Stahl RA, et al. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta. J Clin Invest. 1993; 92: 1366-72
|
|
|
38) Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, et al. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation. 2005; 111: 2509-17
|
|
|
39) Wang W, Huang XR, Canlas E, et al. Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circ Res. 2006; 98: 1032-39
|
|
|
40) Carvajal G, Rodriguez-Vita J, Rodrigues-Diez R, et al. Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney Int. 2008; 74: 585-95.
|
|
|
41) Kondo N, Kiyomoto H, Rahman M, et al. Effects of calcium channel blockade on angiotensin II-induced peritubular ischemia in rats. J Pharmacol Exp Ther. 2006; 316: 1047-52
|
|
|
42) Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006; 17: 17-25
|
|
|
43) Mori T, Cowley AW, Jr. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats. Hypertension. 2004; 43: 752-9
|
|
|
44) Katsurada A, Hagiwara Y, Miyashita K, et al. Novel sandwich ELISA for human angiotensinogen. Am J Physiol Renal Physiol. 2007; 293: F956-60
|
|
|
45) Yamamoto T, Nakagawa T, Suzuki H, et al. Urinary angiotensinogen as a marker of intrarenal angiotensin II activity associated with deterioration of renal function in patients with chronic kidney disease. J Am Soc Nephrol. 2007; 18: 1558-65
|
|
|