1) Lajer H, Daugaard G. Cisplatin and hypomagnesemia. Cancer Treat Rev. 1999; 25: 47-58
|
|
|
2) Daley-Yates PT, McBrien DC. A study of the protective effect of chloride salts on cisplatin nephrotoxicity. Biochem Pharmacol. 1985; 34: 2363-9
|
|
|
3) Kroning R, Lichtenstein AK, Nagami GT. Sulfur-containing amino acids decrease cisplatin cytotoxicity and uptake in renal tubule epithelial cell lines. Cancer Chemother Pharmacol. 2000; 45: 43-9
|
|
|
4) Kuhlmann MK, Burkhardt G, Kohler H. Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant. 1997; 12: 2478-80
|
|
|
5) Ishida S, Lee J, Thiele DJ, et al. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A. 2002; 99: 14298-302
|
|
|
6) Yokoo S, Yonezawa A, Masuda S, et al. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol. 2007; 74: 477-87
|
|
|
7) Ludwig T, Riethmuller C, Gekle M, et al. Nephrotoxicity of platinum complexes is related to basolateral organic cation transport. Kidney Int. 2004; 66: 196-202
|
|
|
8) Ciarimboli G, Ludwig T, Lang D, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005; 167: 1477-84
|
|
|
9) Townsend DM, Deng M, Zhang L, et al. Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J Am Soc Nephrol. 2003; 14: 1-10
|
|
|
10) Hanigan MH, Lykissa ED, Townsend DM, et al. Gamma-glutamyl transpeptidase-deficient mice are resistant to the nephrotoxic effects of cisplatin. Am J Pathol. 2001; 159: 1889-94
|
|
|
11) Wei Q, Dong G, Franklin J, et al. The pathological role of Bax in cisplatin nephrotoxicity. Kidney Int. 2007; 72: 53-62
|
|
|
12) Ramesh G, Reeves WB. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest. 2002; 110: 835-42
|
|
|
13) Razzaque MS, Koji T, Kumatori A, et al. Cisplatin-induced apoptosis in human proximal tubular epithelial cells is associated with the activation of the Fas/Fas ligand system. Histochem Cell Biol. 1999; 111: 359-65
|
|
|
14) Tsuruya K, Ninomiya T, Tokumoto M, et al. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney Int. 2003; 63: 72-82
|
|
|
15) Ramesh G, Reeves WB. Inflammatory cytokines in acute renal failure. Kidney Int. 2004; 66 (Suppl): S56-S61
|
|
|
16) Park MS, De Leon M, Devarajan P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol. 2002; 13: 858-65
|
|
|
17) Chang CY, Lin YM, Lee WP, et al. Involvement of Bcl-X(L) deamidation in E1A-mediated cisplatin sensitization of ovarian cancer cells. Oncogene. 2006; 25: 2656-65
|
|
|
18) Liu H, Baliga R. Endoplasmic reticulum stress-associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J Am Soc Nephrol. 2005; 16: 1985-92
|
|
|
19) Cummings BS, McHowat J, Schnellmann RG. Role of an endoplasmic reticulum Ca2+-independent phospholipase A2 in cisplatin-induced renal cell apoptosis. J Pharmacol Exp Ther. 2004; 308: 921-8
|
|
|
20) Yang C, Kaushal V, Shah SV, et al. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol. 2008; 294: F777-87
|
|
|
21) Ortiz A, Lorz C, Catalan MP, et al. Expression of apoptosis regulatory proteins in tubular epithelium stressed in culture or following acute renal failure. Kidney Int. 2000; 57: 969-81
|
|
|
22) Liu M, Chien CC, Burne-Taney M, et al. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J Am Soc Nephrol. 2006; 17: 765-74
|
|
|
23) Ramesh G, Reeves WB. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure. Am J Physiol Renal Physiol. 2003; 285: F610-8
|
|
|
24) Deng J, Kohda Y, Chiao H, et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 2001; 60: 2118-28
|
|
|
25) Price PM, Yu F, Kaldis P, et al. Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. J Am Soc Nephrol. 2006; 17: 2434-42
|
|
|
26) Yu F, Megyesi J, Safirstein RL, et al. Involvement of the CDK2-E2F1 pathway in cisplatin cytotoxicity in vitro and in vivo. Am J Physiol Renal Physiol. 2007; 293: F52-9
|
|
|
27) Nowak G. Protein kinase C-alpha and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells. J Biol Chem. 2002; 277: 43377-88
|
|
|
28) Schweyer S, Soruri A, Meschter O, et al. Cisplatin-induced apoptosis in human malignant testicular germ cell lines depends on MEK/ERK activation. Br J Cancer. 2004; 91: 589-98
|
|
|
29) Kuwana H, Terada Y, Kobayashi T, et al. The phosphoinositide-3 kinase gamma-Akt pathway mediates renal tubular injury in cisplatin nephrotoxicity. Kidney Int. 2008; 73: 430-45
|
|
|
30) Pabla N, Huang S, Mi QS, et al. ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem. 2008; 283: 6572-83
|
|
|
31) Wei Q, Dong G, Yang T, et al. Activation and involvement of p53 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol. 2007; 293: F1282-91
|
|
|
32) Jiang M, Wei Q, Wang J, et al. Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene. 2006; 25: 4056-66
|
|
|
33) Kawai Y, Nakao T, Kunimura N, et al. Relationship of intracellular calcium and oxygen radicals to cisplatin-related renal cell injury. J Pharmacol Sci. 2006; 100: 65-72
|
|
|
34) Yilmaz HR, Iraz M, Sogut S, et al. The effects of erdosteine on the activities of some metabolic enzymes during cisplatin-induced nephrotoxicity in rats. Pharmacol Res. 2004; 50: 287-90
|
|
|
35) Durak I, Ozbek H, Karaayvaz M, et al. Cisplatin induces acute renal failure by impairing antioxidant system in guinea pigs: effects of antioxidant supplementation on the cisplatin nephrotoxicity. Drug Chem Toxicol. 2002; 25: 1-8
|
|
|
36) Jiang M, Wei Q, Pabla N, et al. Effects of hydroxyl radical scavenging on cisplatin-induced p53 activation, tubular cell apoptosis and nephrotoxicity. Biochem Pharmacol. 2007; 73: 1499-510
|
|
|
37) Iguchi T, Nishikawa M, Chang B, et al. Edaravone inhibits acute renal injury and cyst formation in cisplatin-treated rat kidney. Free Radic Res. 2004; 38: 333-41
|
|
|
38) Agarwal A, Nick HS. Renal response to tissue injury: lessons from heme oxygenase-1 gene ablation and expression. J Am Soc Nephrol. 2000; 11: 965-73
|
|
|
39) Winston JA, Safirstein R. Reduced renal blood flow in early cisplatin-induced acute renal failure in the rat. Am J Physiol. 1985; 249(4 Pt 2): F490-6
|
|
|
40) Weidemann A, Bernhardt WM, Klanke B, et al. HIF activation protects from acute kidney injury. J Am Soc Nephrol. 2008; 19: 486-94
|
|
|
41) Portilla D. Energy metabolism and cytotoxicity. Semin Nephrol. 2003; 23: 432-8
|
|
|
42) Negishi K, Noiri E, Sugaya T, et al. A role of liver fatty acid-binding protein in cisplatin-induced acute renal failure. Kidney Int. 2007; 72: 348-58
|
|
|
43) Portilla D, Dai G, McClure T, et al. Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int. 2002; 62: 1208-18
|
|
|
44) Portilla D, Li S, Nagothu KK, et al. Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int. 2006; 69: 2194-204
|
|
|
45) Weinberg JM. Lipotoxicity. Kidney Int. 2006; 70: 1560-6
|
|
|
46) Zager RA, Andoh T, Bennett WM. Renal cholesterol accumulation: a durable response after acute and subacute renal insults. Am J Pathol. 2001; 159: 743-52
|
|
|
47) Negishi K, Noiri E, Maeda R, et al. Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury. Kidney Int. 2008; 73: 1374-84
|
|
|