医中誌リンクサービス


文献リスト

1) Naderi AS, Reilly RF Jr. Hereditary etiologies of hypomagnesemia. Nat Clin Pract Nephrol. 2008; 4: 80-9
PubMed
医中誌リンクサービス
2) Simon DB, Lu Y, Choate KA, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999; 285: 103-6
PubMed CrossRef
医中誌リンクサービス
3) Voets T, Nilius B, Hoefs S, et al. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem. 2004; 279: 19-25
PubMed
医中誌リンクサービス
4) Penner R, Fleig A. The Mg2+ and Mg2+-nucleotide-regulated channel-kinase TRPM7. Handb Exp Pharmacol. 2007; 179: 313-28
PubMed
医中誌リンクサービス
5) Efrati E, Arsentiev-Rozenfeld J, Zelikovic I. The human paracellin-1 gene (hPCLN-1): renal epithelial cell-specific expression and regulation. Am J Physiol Renal Physiol. 2005; 288: F272-83
PubMed
医中誌リンクサービス
6) Wong V, Goodenough DA. Paracellular channels! Science. 1999; 285: 103-6
PubMed CrossRef
医中誌リンクサービス
7) Hou J, Paul DL, Goodenough DA. Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci. 2005; 118: 5109-18
PubMed CrossRef
医中誌リンクサービス
8) Angelow S, El-Husseini R, Kanzawa SA, et al. Renal localization and function of the tight junction protein, claudin-19. Am J Physiol Renal Physiol. 2007; 293: F166-77
PubMed CrossRef
医中誌リンクサービス
9) Konrad M, Schaller A, Seelow D, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006; 79: 949- 57
PubMed CrossRef
医中誌リンクサービス
10) Schlingmann KP, Weber S, Peters M, et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat Genet. 2002; 31: 166-70
PubMed CrossRef
医中誌リンクサービス
11) Walder RY, Landau D, Meyer P, et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet. 2002; 31: 171-4
PubMed CrossRef
医中誌リンクサービス
12) Schlingmann KP, Sassen MC, Weber S, et al. Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol. 2005; 16: 3061-9
PubMed CrossRef
医中誌リンクサービス
13) Schlingmann KP, Waldegger S, Konrad M, et, al. TRPM6 and TRPM7‐Gatekeepers of human magnesium metabolism. Biochim Biophys Acta. 2007; 1772: 813-21
PubMed
医中誌リンクサービス
14) Chubanov V, Waldegger S, Schuitzler MMy, et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A. 2004; 101: 2894-9
PubMed CrossRef
医中誌リンクサービス
15) Groenestege WM, Thebault S, van der Wijst J, et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest. 2007; 117: 2260-7
PubMed CrossRef
医中誌リンクサービス
16) Riccardi D, Hall AE, Chattopadhyay N, et al. Localization of the extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am J Physiol. 1998; 274: F611-22
PubMed
医中誌リンクサービス
17) Brown EM. Clinical lessons from the calcium-sensing receptor. Nat Clin Pract Endocrinol Metab. 2007; 3: 122-33
PubMed CrossRef
医中誌リンクサービス
18) Meij IC, Koenderink JB, van Bokhoven H, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+, K+-ATPase gamma-subunit. Nat Genet. 2000; 26: 265-6
PubMed CrossRef
医中誌リンクサービス
19) Meij IC, Koenderink JB, De Jong JC, et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+, K+-ATPase gamma-subunit. Ann NY Acad Sci. 2003; 986: 437-43
医中誌リンクサービス
20) Knoers NV. Gitelman syndrome. Adv Chronic Kidney Dis. 2006; 13: 148-54
PubMed CrossRef
医中誌リンクサービス
21) Hebert SC. Bartter syndrome. Curr Opin Nephrol Hypertens. 2003; 12: 527-32
PubMed CrossRef
医中誌リンクサービス
22) Goytain A, Quamme GA. Functional characterization of human SLC41A1, a Mg2+ transporter with similarity to prokaryotic MgtE Mg2+ transporters. Physiol Genomics. 2005; 21: 337-42
PubMed CrossRef
医中誌リンクサービス
23) Goytain A, Quamme GA. Functional characterization of the mouse [corrected] solute carrier, SLC41A2. Biochem Biophys Res Commun. 2005; 330: 701-5
PubMed CrossRef
医中誌リンクサービス
24) Goytain A, Quamme GA. Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genomics. 2005; 6: 48
PubMed CrossRef
医中誌リンクサービス
25) Goytain A, Quamme GA. Functional characterization of ACDP2 (ancient conserved domain protein), a divalent metal transporter. Physiol Genomics. 2005; 22: 382-9
PubMed CrossRef
医中誌リンクサービス
26) Goytain A, Hines RM, El-Husseini A, et, al. NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J Biol Chem. 2007; 282: 8060-8
PubMed CrossRef
医中誌リンクサービス
27) Goytain A, Hines RM, Quamme GA. Functional characterization of NIPA2, a selective Mg2+ transporter. Am J Physiol Cell Physiol. 2008; 295: C944-53
PubMed CrossRef
医中誌リンクサービス
28) Goytain A, Quamme GA. Identification and characterization of a novel family of membrane magnesium transporters, MMgT1 and MMgT2. Am J Physiol Cell Physiol. 2008; 294: C495-502
PubMed
医中誌リンクサービス
29) Goytain A, Hines RM, Quamme GA. Huntingtin-interacting proteins, HIP14 and HIP14L, mediate dual functions: Palmitoyl acyltransferase and Mg2+ transport. J Biol Chem. 2008, (in press)
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp