医中誌リンクサービス


文献リスト

1) Gabow PA. Autosomal dominant polycystic kidney disease. N Engl J Med. 1993; 329: 332-42
PubMed CrossRef
医中誌リンクサービス
2) The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell. 1994; 77: 881-94
PubMed CrossRef
医中誌リンクサービス
3) Mochizuki T, Wu G, Hayashi T, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996; 272: 1339-42
PubMed CrossRef
医中誌リンクサービス
4) Wilson PD. Polycystic kidney disease. N Engl J Med. 2004; 350: 151-64
PubMed CrossRef
医中誌リンクサービス
5) Hanaoka K, Qian F, Boletta A, et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature. 2000; 408: 990-4
PubMed CrossRef
医中誌リンクサービス
6) Torres VE, Harris PC, Pirson Y, et al. Autosomal dominant polycystic kidney disease. Lancet. 2007; 369: 1287-301
PubMed CrossRef
医中誌リンクサービス
7) Montell C, Jones K, Hafen E, et al. Rescue of the Drosophila phototransduction mutation trp by germline transformation. Science. 1985; 230: 1040-43
PubMed CrossRef
医中誌リンクサービス
8) Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989; 2: 1313-23
PubMed CrossRef
医中誌リンクサービス
9) Montell C, Birnbaumer L, Flockerzi V, et al. A unified nomenclature for the uperfamily of TRP cation channels. Mol Cell. 2002; 9: 229-31
PubMed CrossRef
医中誌リンクサービス
10) Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006; 68: 619-47
PubMed CrossRef
医中誌リンクサービス
11) Lepage PK, Boulay G. Molecular determinants of TRP channel assembly. Biochem Soc Trans. 2007; 35: 81-83
PubMed CrossRef
医中誌リンクサービス
12) Clapham DE. TRP channels as cellular sensors. Nature. 2003; 426: 517-24
PubMed CrossRef
医中誌リンクサービス
13) Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch. 2007; 454: 821-47
PubMed CrossRef
医中誌リンクサービス
14) Christensen AP, Corey DP. TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci. 2007; 8: 510-21
PubMed
医中誌リンクサービス
15) Kwon Y, Shim HS, Wang X, et al. Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat Neurosci. 2008; 11: 871-3
PubMed CrossRef
医中誌リンクサービス
16) Nilius B, Owsianik G, Voets T, et al. Transient receptor potential cation channels in disease. Physiol Rev. 2007; 87: 165-217
PubMed CrossRef
医中誌リンクサービス
17) Owsianik G, Talavera K, Voets T, et al. Permeation and selectivity of TRP channels. Annu Rev Physiol. 2006; 68: 685-717
PubMed CrossRef
医中誌リンクサービス
18) Hoenderop JG, van der Kemp AW, Hartog A, et al. Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem. 1999; 274: 8375-8
PubMed CrossRef
医中誌リンクサービス
19) Hoenderop JG, van Leeuwen JP, van der Eerden BC, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest. 2003; 112: 1906-14
PubMed
医中誌リンクサービス
20) Peng JB, Chen XZ, Berger UV, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 1999; 274: 22739-46
PubMed CrossRef
医中誌リンクサービス
21) Bianco SD, Peng JB, Takanaga H, et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res. 2007; 22: 274-85
PubMed CrossRef
医中誌リンクサービス
22) Mizuno A, Matsumoto N, Imai M, et al. Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol. 2003; 285: C96-101
医中誌リンクサービス
23) Reiser J, Polu KR, Moller CC, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005; 37: 739-44
PubMed CrossRef
医中誌リンクサービス
24) Mukerji N, Damodaran TV, Winn MP. TRPC6 and FSGS: the latest TRP channelopathy. Biochim Biophys Acta. 2007; 1772: 859-68
PubMed
医中誌リンクサービス
25) Giamarchi A, Padilla F, Coste B, et al. The versatile nature of the calcium-permeable cation TRPP2. EMBO Rep. 2006; 7: 787-93
PubMed CrossRef
医中誌リンクサービス
26) Qamar S, Vadivelu M, Sandford R. TRP channels and kidney disease: lessons from polycystic kidney disease. Biochem Soc Trans. 2007; 35: 124-8
PubMed CrossRef
医中誌リンクサービス
27) Hsu YJ, Hoenderop JG, Bindels RJ. TRP channels in kidney disease. Biochim Biophys Acta. 2007; 1772: 928-36
PubMed
医中誌リンクサービス
28) Nomura H, Turco AE, Pei Y, et al. Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. J Biol Chem. 1998; 273: 25967-73
PubMed CrossRef
医中誌リンクサービス
29) Guo L, Schreiber TH, Weremowicz S, et al. Identification and characterization of a novel polycystin family member, polycystin-L2, in mouse and human: sequence, expression, alternative splicing, and chromosomal localization. Genomics. 2000; 15: 64: 241-51
医中誌リンクサービス
30) Veldhuisen B, Spruit L, Dauwerse HG, et al. Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur J Hum Genet. 1999; 7: 860-72
PubMed CrossRef
医中誌リンクサービス
31) Cantiello HF. Regulation of calcium signaling by polycystin-2. Am J Physiol. 2004; 286: F1012-29
医中誌リンクサービス
32) Qian F, Noben-Truth K. Cellular and molecular function of mucolipins (TRPML) and polycystin2 (TRPP2). Pflugers Arch. 2005; 452: 277-85
医中誌リンクサービス
33) Qian F, Germino FJ, Cai Y, et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet. 1997; 16: 179-83
PubMed CrossRef
医中誌リンクサービス
34) Tsiokas L, Kim E, Arnould T, et al. Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci U S A. 1997; 94: 6965-70
PubMed CrossRef
医中誌リンクサービス
35) Foggensteiner L, Bevan AP, Thomas R, et al. Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J Am Soc Nephrol. 2000; 11: 814-27
PubMed
医中誌リンクサービス
36) Kottgen M, Walz G. Subcellular localization and trafficking of polycystins. Pflugers Arch. 2005; 451: 286-93
PubMed CrossRef
医中誌リンクサービス
37) Fu X, Wang, Schetle N, et al. The subcellular localization of TRPP2 modulates the function. J Am Soc Nephrol. 2008; 19: 1342-51
PubMed CrossRef
医中誌リンクサービス
38) Cai Y, Maeda Y, Cedzich A, et al. Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem. 1999; 274: 28557-65
PubMed CrossRef
医中誌リンクサービス
39) Streets AJ, Moon DJ, Kane ME, et al. Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet. 2006; 15: 1465-73
PubMed CrossRef
医中誌リンクサービス
40) Hidaka S, Konecke V, Osten L, Witzgall R. PIGEA-14, a novel coiled-coil protein affecting the intracellular distribution of polycystin-2. J Biol Chem. 2004; 279: 35009 -16
PubMed CrossRef
医中誌リンクサービス
41) Kottgen M, Benzing T, Simmen T, et al. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 2005 23; 24: 705-16
PubMed CrossRef
医中誌リンクサービス
42) Li Y, Wright JM, Qian F, et al. Polycystin 2 interacts with type I inositol 1, 4, 5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem. 2005; 280: 41298-306
PubMed CrossRef
医中誌リンクサービス
43) Kottgen M, Buchholz B, Garcia-Gonzalez MA, et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol. 2008; 182: 437-47
PubMed CrossRef
医中誌リンクサービス
44) Ong AC, Ward CJ, Butler RJ, et al. Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am J Pathol. 1999; 154: 1721-9
PubMed
医中誌リンクサービス
45) Delmas P, Nauli SM, Li X, et al. Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J. 2004; 18: 740-2
PubMed
医中誌リンクサービス
46) Gonzalez-Perrett S, Kim K, Ibarra C, et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A. 2001; 98: 1182-7
PubMed CrossRef
医中誌リンクサービス
47) Li Q, Montalbetti N, Shen PY, et al. Alpha-actinin associates with polycystin-2 and regulates its channel activity. Hum Mol Genet. 2005; 14: 1587-603
PubMed CrossRef
医中誌リンクサービス
48) Montalbetti N, Li Q, Wu Y, et al. Polycystin-2 cation channel function in the human syncytiotrophoblast is regulated by microtubular structures. J Physiol. 2007; 579: 717-28
PubMed CrossRef
医中誌リンクサービス
49) Koulen P, Cai Y, Geng L, et al. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 2002; 4: 191-7
PubMed CrossRef
医中誌リンクサービス
50) Ibanez-Tallon I, Heintz N, Omran H. To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet. 2003; 12: R27-35
PubMed CrossRef
医中誌リンクサービス
51) Bae YK, Barr MM. Sensory roles of neuronal cilia: cilia development, morphogenesis, and function in C. elegans. Front Biosci. 2008; 13: 5959-74
PubMed
医中誌リンクサービス
52) Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007; 69: 377-400
PubMed CrossRef
医中誌リンクサービス
53) Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol. 2007; 69: 423-50
PubMed CrossRef
医中誌リンクサービス
54) Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000; 151: 709-18
PubMed CrossRef
医中誌リンクサービス
55) Barr MM, DeModerna J, Braun D, et al. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol. 2001; 11: 1341-6
PubMed CrossRef
医中誌リンクサービス
56) Barr MM, Sternberg PW. A polycystic kidney-disease gene homologue required for male mate behavior in C. elegans. Nature. 1999; 401: 386- 9
PubMed
医中誌リンクサービス
57) Obermuller N, Gallagher AR, Cai Y, et al. The rat pkd2 protein assumes distinct subcellular distributions in different organs. Am J Physiol. 1999; 277: F914-25
PubMed
医中誌リンクサービス
58) Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 2002; 13: 2508-16
PubMed CrossRef
医中誌リンクサービス
59) Ward CJ, Yuan D, Masyuk TV, et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet. 2003; 12: 2703-10
PubMed CrossRef
医中誌リンクサービス
60) Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol. 2001; 184: 71-9
PubMed CrossRef
医中誌リンクサービス
61) Praetorius HA, Spring KR. A physiological view of the primary cilium. Annu Rev Physiol. 2005; 67: 515-29
PubMed CrossRef
医中誌リンクサービス
62) Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003; 33: 129-37
PubMed CrossRef
医中誌リンクサービス
63) Sullivan LP, Wallace DP, Grantham JJ. Epithelial transport in polycystic kidney disease. Physiol Rev. 1998; 78: 1165-91
PubMed
医中誌リンクサービス
64) Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol. 2002; 13: 2384-98
PubMed CrossRef
医中誌リンクサービス
65) Wilson PD. Polycystic kidney disease. N Engl J Med. 2004; 350: 151-64
PubMed CrossRef
医中誌リンクサービス
66) Hanaoka K, Devuyst O, Schwiebert EM, et al. A role for CFTR in human autosomal dominant polycystic kidney disease. Am J Physiol. 1996; 270: C389-99
PubMed
医中誌リンクサービス
67) Hanaoka, K, Guggino WB. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cell. J Am Soc Nephrol. 2000; 11: 1179-87
PubMed
医中誌リンクサービス
68) Yamaguchi T, Wallace DP, Magenheimer BS, et al. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem. 2004; 279: 40419-30
PubMed CrossRef
医中誌リンクサービス
69) Bennett WM. V2 receptor antagonists in cystic kidney diseases: An exciting step towards a practical treatment. J Am Soc Nephrol. 2005; 16: 838-9
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp