1) Gabow PA. Autosomal dominant polycystic kidney disease. N Engl J Med. 1993; 329: 332-42
|
|
|
2) The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell. 1994; 77: 881-94
|
|
|
3) Mochizuki T, Wu G, Hayashi T, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996; 272: 1339-42
|
|
|
4) Wilson PD. Polycystic kidney disease. N Engl J Med. 2004; 350: 151-64
|
|
|
5) Hanaoka K, Qian F, Boletta A, et al. Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature. 2000; 408: 990-4
|
|
|
6) Torres VE, Harris PC, Pirson Y, et al. Autosomal dominant polycystic kidney disease. Lancet. 2007; 369: 1287-301
|
|
|
7) Montell C, Jones K, Hafen E, et al. Rescue of the Drosophila phototransduction mutation trp by germline transformation. Science. 1985; 230: 1040-43
|
|
|
8) Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989; 2: 1313-23
|
|
|
9) Montell C, Birnbaumer L, Flockerzi V, et al. A unified nomenclature for the uperfamily of TRP cation channels. Mol Cell. 2002; 9: 229-31
|
|
|
10) Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006; 68: 619-47
|
|
|
11) Lepage PK, Boulay G. Molecular determinants of TRP channel assembly. Biochem Soc Trans. 2007; 35: 81-83
|
|
|
12) Clapham DE. TRP channels as cellular sensors. Nature. 2003; 426: 517-24
|
|
|
13) Wang T, Montell C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch. 2007; 454: 821-47
|
|
|
14) Christensen AP, Corey DP. TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci. 2007; 8: 510-21
|
|
|
15) Kwon Y, Shim HS, Wang X, et al. Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat Neurosci. 2008; 11: 871-3
|
|
|
16) Nilius B, Owsianik G, Voets T, et al. Transient receptor potential cation channels in disease. Physiol Rev. 2007; 87: 165-217
|
|
|
17) Owsianik G, Talavera K, Voets T, et al. Permeation and selectivity of TRP channels. Annu Rev Physiol. 2006; 68: 685-717
|
|
|
18) Hoenderop JG, van der Kemp AW, Hartog A, et al. Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem. 1999; 274: 8375-8
|
|
|
19) Hoenderop JG, van Leeuwen JP, van der Eerden BC, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest. 2003; 112: 1906-14
|
|
|
20) Peng JB, Chen XZ, Berger UV, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 1999; 274: 22739-46
|
|
|
21) Bianco SD, Peng JB, Takanaga H, et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res. 2007; 22: 274-85
|
|
|
22) Mizuno A, Matsumoto N, Imai M, et al. Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol. 2003; 285: C96-101
|
|
|
23) Reiser J, Polu KR, Moller CC, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005; 37: 739-44
|
|
|
24) Mukerji N, Damodaran TV, Winn MP. TRPC6 and FSGS: the latest TRP channelopathy. Biochim Biophys Acta. 2007; 1772: 859-68
|
|
|
25) Giamarchi A, Padilla F, Coste B, et al. The versatile nature of the calcium-permeable cation TRPP2. EMBO Rep. 2006; 7: 787-93
|
|
|
26) Qamar S, Vadivelu M, Sandford R. TRP channels and kidney disease: lessons from polycystic kidney disease. Biochem Soc Trans. 2007; 35: 124-8
|
|
|
27) Hsu YJ, Hoenderop JG, Bindels RJ. TRP channels in kidney disease. Biochim Biophys Acta. 2007; 1772: 928-36
|
|
|
28) Nomura H, Turco AE, Pei Y, et al. Identification of PKDL, a novel polycystic kidney disease 2-like gene whose murine homologue is deleted in mice with kidney and retinal defects. J Biol Chem. 1998; 273: 25967-73
|
|
|
29) Guo L, Schreiber TH, Weremowicz S, et al. Identification and characterization of a novel polycystin family member, polycystin-L2, in mouse and human: sequence, expression, alternative splicing, and chromosomal localization. Genomics. 2000; 15: 64: 241-51
|
|
|
30) Veldhuisen B, Spruit L, Dauwerse HG, et al. Genes homologous to the autosomal dominant polycystic kidney disease genes (PKD1 and PKD2). Eur J Hum Genet. 1999; 7: 860-72
|
|
|
31) Cantiello HF. Regulation of calcium signaling by polycystin-2. Am J Physiol. 2004; 286: F1012-29
|
|
|
32) Qian F, Noben-Truth K. Cellular and molecular function of mucolipins (TRPML) and polycystin2 (TRPP2). Pflugers Arch. 2005; 452: 277-85
|
|
|
33) Qian F, Germino FJ, Cai Y, et al. PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat Genet. 1997; 16: 179-83
|
|
|
34) Tsiokas L, Kim E, Arnould T, et al. Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci U S A. 1997; 94: 6965-70
|
|
|
35) Foggensteiner L, Bevan AP, Thomas R, et al. Cellular and subcellular distribution of polycystin-2, the protein product of the PKD2 gene. J Am Soc Nephrol. 2000; 11: 814-27
|
|
|
36) Kottgen M, Walz G. Subcellular localization and trafficking of polycystins. Pflugers Arch. 2005; 451: 286-93
|
|
|
37) Fu X, Wang, Schetle N, et al. The subcellular localization of TRPP2 modulates the function. J Am Soc Nephrol. 2008; 19: 1342-51
|
|
|
38) Cai Y, Maeda Y, Cedzich A, et al. Identification and characterization of polycystin-2, the PKD2 gene product. J Biol Chem. 1999; 274: 28557-65
|
|
|
39) Streets AJ, Moon DJ, Kane ME, et al. Identification of an N-terminal glycogen synthase kinase 3 phosphorylation site which regulates the functional localization of polycystin-2 in vivo and in vitro. Hum Mol Genet. 2006; 15: 1465-73
|
|
|
40) Hidaka S, Konecke V, Osten L, Witzgall R. PIGEA-14, a novel coiled-coil protein affecting the intracellular distribution of polycystin-2. J Biol Chem. 2004; 279: 35009 -16
|
|
|
41) Kottgen M, Benzing T, Simmen T, et al. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 2005 23; 24: 705-16
|
|
|
42) Li Y, Wright JM, Qian F, et al. Polycystin 2 interacts with type I inositol 1, 4, 5-trisphosphate receptor to modulate intracellular Ca2+ signaling. J Biol Chem. 2005; 280: 41298-306
|
|
|
43) Kottgen M, Buchholz B, Garcia-Gonzalez MA, et al. TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol. 2008; 182: 437-47
|
|
|
44) Ong AC, Ward CJ, Butler RJ, et al. Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am J Pathol. 1999; 154: 1721-9
|
|
|
45) Delmas P, Nauli SM, Li X, et al. Gating of the polycystin ion channel signaling complex in neurons and kidney cells. FASEB J. 2004; 18: 740-2
|
|
|
46) Gonzalez-Perrett S, Kim K, Ibarra C, et al. Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A. 2001; 98: 1182-7
|
|
|
47) Li Q, Montalbetti N, Shen PY, et al. Alpha-actinin associates with polycystin-2 and regulates its channel activity. Hum Mol Genet. 2005; 14: 1587-603
|
|
|
48) Montalbetti N, Li Q, Wu Y, et al. Polycystin-2 cation channel function in the human syncytiotrophoblast is regulated by microtubular structures. J Physiol. 2007; 579: 717-28
|
|
|
49) Koulen P, Cai Y, Geng L, et al. Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 2002; 4: 191-7
|
|
|
50) Ibanez-Tallon I, Heintz N, Omran H. To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet. 2003; 12: R27-35
|
|
|
51) Bae YK, Barr MM. Sensory roles of neuronal cilia: cilia development, morphogenesis, and function in C. elegans. Front Biosci. 2008; 13: 5959-74
|
|
|
52) Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007; 69: 377-400
|
|
|
53) Zariwala MA, Knowles MR, Omran H. Genetic defects in ciliary structure and function. Annu Rev Physiol. 2007; 69: 423-50
|
|
|
54) Pazour GJ, Dickert BL, Vucica Y, et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 2000; 151: 709-18
|
|
|
55) Barr MM, DeModerna J, Braun D, et al. The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Curr Biol. 2001; 11: 1341-6
|
|
|
56) Barr MM, Sternberg PW. A polycystic kidney-disease gene homologue required for male mate behavior in C. elegans. Nature. 1999; 401: 386- 9
|
|
|
57) Obermuller N, Gallagher AR, Cai Y, et al. The rat pkd2 protein assumes distinct subcellular distributions in different organs. Am J Physiol. 1999; 277: F914-25
|
|
|
58) Yoder BK, Hou X, Guay-Woodford LM. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol. 2002; 13: 2508-16
|
|
|
59) Ward CJ, Yuan D, Masyuk TV, et al. Cellular and subcellular localization of the ARPKD protein; fibrocystin is expressed on primary cilia. Hum Mol Genet. 2003; 12: 2703-10
|
|
|
60) Praetorius HA, Spring KR. Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol. 2001; 184: 71-9
|
|
|
61) Praetorius HA, Spring KR. A physiological view of the primary cilium. Annu Rev Physiol. 2005; 67: 515-29
|
|
|
62) Nauli SM, Alenghat FJ, Luo Y, et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet. 2003; 33: 129-37
|
|
|
63) Sullivan LP, Wallace DP, Grantham JJ. Epithelial transport in polycystic kidney disease. Physiol Rev. 1998; 78: 1165-91
|
|
|
64) Igarashi P, Somlo S. Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol. 2002; 13: 2384-98
|
|
|
65) Wilson PD. Polycystic kidney disease. N Engl J Med. 2004; 350: 151-64
|
|
|
66) Hanaoka K, Devuyst O, Schwiebert EM, et al. A role for CFTR in human autosomal dominant polycystic kidney disease. Am J Physiol. 1996; 270: C389-99
|
|
|
67) Hanaoka, K, Guggino WB. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cell. J Am Soc Nephrol. 2000; 11: 1179-87
|
|
|
68) Yamaguchi T, Wallace DP, Magenheimer BS, et al. Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. J Biol Chem. 2004; 279: 40419-30
|
|
|
69) Bennett WM. V2 receptor antagonists in cystic kidney diseases: An exciting step towards a practical treatment. J Am Soc Nephrol. 2005; 16: 838-9
|
|
|