1) Nagata M, Nakayama K, Terada Y, et al. Cell cycle regulation and differentiation in the human podocyte lineage. Am J Pathol. 1998; 153: 1511-20
|
|
|
2) Tomari S, Nagahama H, Shu Y, et al. Glomerular differentiation in p27 and p57 double-mutant metanephroi. Anat Embryol (Berl). 2002; 206(1-2): 31-6
|
|
|
3) Kim YG, Alpers CE, Brugarolas J, et al. The cyclin kinase inhibitor p21CIP1/WAF1 limits glomerular epithelial cell proliferation in experimental glomerulonephritis. Kidney Int. 1999; 55: 2349-61
|
|
|
4) Kriz W, Hahnel B, Rosener S, et al. Long-term treatment of rats with FGF-2 results in focal segmental glomerulosclerosis. Kidney Int. 1995; 48: 1435-50
|
|
|
5) D'Agati VD. The spectrum of focal segmental glomerulosclerosis: new insights. Curr Opin Nephrol Hypertens. 2008; 17: 271-81
|
|
|
6) Kajiyama W, Kopp JB, Marinos NJ, et al. Glomerulosclerosis and viral gene expression in HIV-transgenic mice: role of nef. Kidney Int. 2000; 58: 1148-59
|
|
|
7) He JC, Husain M, Sunamoto M, et al. Nef stimulates proliferation of glomerular podocytes through activation of Src-dependent Stat3 and MAPK1, 2 pathways. J Clin Invest. 2004; 114: 643-51
|
|
|
8) Korgaonkar SN, Feng X, Ross MD, et al. HIV-1 upregulates VEGF in podocytes. J Am Soc Nephrol. 2008; 19: 877-83
|
|
|
9) Husain M, D'Agati VD, He JC, et al. HIV-1 Nef induces dedifferentiation of podocytes in vivo: a characteristic feature of HIVAN. Aids. 2005; 19: 1975-80
|
|
|
10) Zhong J, Zuo Y, Ma J, et al. Expression of HIV-1 genes in podocytes alone can lead to the full spectrum of HIV-1-associated nephropathy. Kidney Int. 2005; 68: 1048-60
|
|
|
11) Zuo Y, Matsusaka T, Zhong J, et al. HIV-1 genes vpr and nef synergistically damage podocytes, leading to glomerulosclerosis. J Am Soc Nephrol. 2006; 17: 2832-43
|
|
|
12) Albaqumi M, Barisoni L. Current views on collapsing glomerulopathy. J Am Soc Nephrol. 2008; 19: 1276-81
|
|
|
13) Avila-Casado Mdel C, Perez-Torres I, Auron A, et al. Proteinuria in rats induced by serum from patients with collapsing glomerulopathy. Kidney Int. 2004; 66: 133-43
|
|
|
14) Nadasdy T, Allen C, Zand MS. Zonal distribution of glomerular collapse in renal allografts: possible role of vascular changes. Hum Pathol. 2002; 33: 437-41
|
|
|
15) Sauter M, Julg B, Porubsky S, et al. Nephrotic-range proteinuria following pamidronate therapy in a patient with metastatic breast cancer: mitochondrial toxicity as a pathogenetic concept? Am J Kidney Dis. 2006; 47: 1075- 80
|
|
|
16) Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol. 2007; 18: 2773-80
|
|
|
17) Barisoni L, Madaio MP, Eraso M, et al. The kd/kd mouse is a model of collapsing glomerulopathy. J Am Soc Nephrol. 2005; 16: 2847-51
|
|
|
18) Barisoni L, Mokrzycki M, Sablay L, et al. Podocyte cell cycle regulation and proliferation in collapsing glomerulopathies. Kidney Int. 2000; 58: 137-43
|
|
|
19) Dijkman H, Smeets B, van der Laak J, et al. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis. Kidney Int. 2005; 68: 1562-72
|
|
|
20) Dijkman HB, Weening JJ, Smeets B, et al. Proliferating cells in HIV and pamidronate-associated collapsing focal segmental glomerulosclerosis are parietal epithelial cells. Kidney Int. 2006; 70: 338-44
|
|
|
21) Asano T, Niimura F, Pastan I, et al. Permanent genetic tagging of podocytes: fate of injured podocytes in a mouse model of glomerular sclerosis. J Am Soc Nephrol. 2005; 16: 2257- 62
|
|
|
22) Bariety J, Mandet C, Hill GS, et al. Parietal podocytes in normal human glomeruli. J Am Soc Nephrol. 2006; 17: 2770-80
|
|
|
23) Moeller MJ, Soofi A, Hartmann I, et al. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J Am Soc Nephrol. 2004; 15: 61-7
|
|
|
24) Ding M, Cui S, Li C, et al. Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nat Med. 2006; 12: 1081-7
|
|
|
25) Thorner PS, Ho M, Eremina V, et al. Podocytes contribute to the formation of glomerular crescents. J Am Soc Nephrol. 2008; 19: 495- 502
|
|
|
26) Becker JU, Hoerning A, Schmid KW, et al. Immigrating progenitor cells contribute to human podocyte turnover. Kidney Int. 2007; 72: 1468-73
|
|
|
27) Prodromidi EI, Poulsom R, Jeffery R, et al. Bone marrow-derived cells contribute to podocyte regeneration and amelioration of renal disease in a mouse model of Alport syndrome. Stem Cells. 2006; 24: 2448-55
|
|
|
28) Sugimoto H, Mundel TM, Sund M, et al. Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci U S A. 2006; 103: 7321-6
|
|
|
29) Matsusaka T, Xin J, Niwa S, et al. Genetic engineering of glomerular sclerosis in the mouse via control of onset and severity of podocyte-specific injury. J Am Soc Nephrol. 2005; 16: 1013-23
|
|
|