1) Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990; 87: 1620-4
|
|
|
2) 杉浦久敏, 一ノ瀬正和, 白土邦男. 気道炎症とNO. In: 工藤翔二, 他編. Annual Review 呼吸器. 東京: 中外医学社; 1996. p. 48-56
|
|
|
3) Ichinose M, Sugiura H, Yamagata S, et al. Increase in reactive nitrogen species production in chronic obstructive pulmonary disease airways. Am J Respir Crit Care Med. 2000; 162: 701-6
|
|
|
4) Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991; 43: 109-42
|
|
|
5) Eiserich JP, Hristova M, Cross CE, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998; 391: 393-7
|
|
|
6) Sugiura H, Ichinose M, Oyake T, et al. Role of peroxynitrite in airway microvascular hyperpermeability during late allergic phase in guinea pigs. Am J Respir Crit Care Med. 1999; 160: 663-71
|
|
|
7) Koarai A, Ichinose M, Sugiura H, et al. Allergic airway hyperresponsiveness and eosinophil infiltration is reduced by a selective iNOS ihibitor, 1400W, in mice. Pulm Pharmacol Ther. 2000; 13: 267-75
|
|
|
8) Koarai A, Ichinose M, Sugiura H, et al. iNOS depletion completely diminishes reactive nitrogen-species formation after an allergic response. Eur Respir J. 2002; 20: 609-16
|
|
|
9) Zimmermann N, King NE, Lapotre J, et al. Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest. 2003; 111: 1863-74
|
|
|
10) Batra J, Singh TP, Mabarilajan U, et al. Association of inducible nitric oxide synthase with asthma severity, total immunoglobulin E and bolld eosinophil level. Thorax. 2007; 62: 16-22
|
|
|
11) Que LG, Liu L, Yan Y, et al. Protection from experimental asthma by an endogenous bronchodilator. Science. 2005; 308: 1618-21
|
|
|
12) Tschumperlin DJ, Drazen JM. Chronic effects of mechanical force on airways. Annu Rev Physiol. 2006; 68: 563-83
|
|
|
13) Busse WW, Banks-Schlegel S, Wenzel SE. Pathophysiology of severe asthma. J Allergy Clin Immunol. 2000; 106: 1033-42
|
|
|
14) Hoshino M, Nakamura Y, Sim JJ, et al. Expression of growth factors and remodelling of the airway wall in bronchial asthma. Thorax. 1998; 53: 21-7
|
|
|
15) Ohno I, Nitta Y, Yamauchi K, et al. Transforming growth factor beta 1 (TGF beta 1) gene expression by eosinophils in asthmatic airway inflammation. Am J Respir Cell Mol Biol. 1996; 15: 404-9
|
|
|
16) Sugiura H, Liu X, Kobayashi T, et al. Reactive nitrogen species augment fibroblast-mediated collagen gel contraction, mediator production, and chemotaxis. Am J Respir Cell Mol Biol. 2006; 34: 592-9
|
|
|
17) Okamoto T, Akaike T, Sawa T, et al. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem. 2001; 276: 29596-602
|
|
|
18) Prado CM, Lelck-Maldonado EA, Yano L, et al. Effects of nitric oxide synthases in chronic allergic airway inflammation and remodeling. Am J Respir Cell Mol Biol. 2006; 35: 457-65
|
|
|
19) Bhandari V, Choo-Wing R, Chapoval SP, et al. Essential role of nitric oxide in VEGF-induced, asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proc Natl Acad Sci U S A. 2006; 103: 11021-6
|
|
|
20) Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2006
|
|
|
21) Fu X, Kassim SY, Parks WC, et al. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem. 2001; 276: 41279-87
|
|
|
22) Frears ER, Zhang Z, Blake DR, et al. Inactivation of tissue inhibitor of metalloproteinase-1 by peroxynitrite. FEBS Lett. 1996; 381: 21-4
|
|
|
23) Repine JE, Bast A, Lankhorst I, et al. Oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997; 156: 341-57
|
|
|
24) Iizuka T, Ishii Y, Ito K, et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells. 2005; 10: 1113-25
|
|
|
25) Sugiura H, Ichinose M, Tomaki M, et al. Quantitative assessment of protein-bound tyrosine nitration in airway secretions from patients with inflammatory airway diseases. Free Radic Res. 2004; 38: 49-57
|
|
|
26) Demedts IK, Demoor T, Bracke KR, et al. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res. 2006; 30: 7: 53
|
|
|
27) Pauwels RA, Lofdahl CG, Laitinen LA, et al. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. European Respiratory Society Study on Chronic Obstructive Pulmonary Disease. N Engl J Med. 1999; 340: 1948-53
|
|
|
28) Lung Health Study Research Group. Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease. N Engl J Med. 2000; 343: 1902-9
|
|
|
29) Burge PS, Calverley PM, Jones PW, et al. Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. BMJ. 2000; 320: 1297-303
|
|
|
30) Vestbo J, Prescott E, Lange P, et al. Long-term effect of inhaled budesonide in mild and moderate chronic obstructive pulmonary disease: a randomised controlled trial. Lancet. 1999; 353: 1819-23
|
|
|
31) Adcock IM, Ford P, Barnes PJ, et al. Epigenetics and airways disease. Respir Res 2006; 7: 21
|
|
|
32) Ito K, Hanazawa T, Tomita K, et al. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem Biophys Res Commun. 2004; 315: 240-5
|
|
|
33) Ichinose M, Sugiura H, Yamagata S, et al. Xanthine oxidase inhibition reduces reactive nitrogen species production in COPD airways. Eur Respir J. 2003; 22: 457-61
|
|
|
34) Sugiura H, Ichinose M, Yamagata S, et al. Correlation between change in pulmonary function and suppression of reactive nitrogen species production following steroid treatment in COPD. Thorax. 2003; 58: 299-305
|
|
|
35) Hirano T, Yamagata T, Gohda M, et al. Inhibition of reactive nitrogen species production in COPD airways: comparison of inhaled corticosteroid and oral theophylline. Thorax. 2006; 61: 761-6
|
|
|
36) Terasaki Y, Akuta T, Terasaki M, et al. Guanine nitration in idiopathic pulmonary fibrosis and its implication for carcinogenesis. Am J Respir Crit Care Med. 2006; 174: 665-73
|
|
|
37) Akaike T, Okamoto S, Sawa T, et al. 8-Nitroguanosine formation in viral pneumonia and its implication for pathogenesis. Proc Natl Acad Sci U S A. 2003; 100: 685-90
|
|
|