1) Fenaux P, Kelaidi C. Treatment of the 5q- syndrome. Hematology (American Society of Hematology). 2006; 192-8
|
|
|
2) Giagounidis AAN, Germing U, Aul C. Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res. 2006; 12: 5-10
|
|
|
3) Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the myelodysplastic syndromes. Brit J Haematol. 1982; 51: 189-99
|
|
|
4) Brunning RD, Bennet JM, Flandrin G, et al. Myelodysplastic syndromes. In: Jaffe ES, et al. editors. World Health Organization classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001. p. 61-73
|
|
|
5) Bernasconi P, Boni M, Cavigliano PM, et al. Clinical relevance of cytogenetics in myelodysplastic syndromes. Ann NY Acad Sci. 2006; 1089: 395-410
|
|
|
6) Harada H, Kondo T, Ogawa S, et al. Accelerated exon skipping of IRF-1 mRNA in human myelodysplasia/leukemia; a possible mechanism of tumor suppressor inactivation. Oncogene. 1994; 9: 3313-20
|
|
|
7) Borkhardt A, Bojesen S, Haas OA, et al. The human GRAF gene is fused to MLL in a unique t(5; 11) (q31; q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. Proc Natl Acad Sci U S A. 2000; 97: 9168-73
|
|
|
8) Panagopoulos I, Kitagawa A, Isaksson M, et al. MLL/GRAF fusion in an infant acute monocytic leukemia (AML M5b) with a cytogenetically cryptic ins (5; 11) (q31; q23q23). Genes Chrom Cancer. 2004; 41: 400-4
|
|
|
9) Hu Z, Gomes I, Horrigan K, et al. A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene. 2001; 20: 6946-54
|
|
|
10) Leeksma OC, van Achterberg TAE, Tsumura Y, et al. Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. Eur J Biochem. 2002; 269: 2546-56
|
|
|
11) Dubourg C, Toutain B, Helias C, et al. Evaluation of ETF/eRF1, mapping to 5q31, as a candidate myeloid tumor suppressor gene. Cancer Genet Cytogenet. 2002; 134: 33-7
|
|
|
12) Joslin JM, Fernald AA, Tennant TR, et al. Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood. 2007; 110: 719-26
|
|
|
13) Herry A, Douet-Guilbert N, Morel F, et al. Redefining monosomy 5 by molecular cytogenetics in 23 patients with MDS/AML. Eur J Haematol. 2007; 78: 457-67
|
|
|
14) Liu TX, Becker MW, Jelinek J, et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding α-catenin (CTNNA1) in myeloid cell transformation. Nat Med. 2007; 13: 78-83
|
|
|
15) Boultwood J, Fidler C, Lewis S, et al. Molecular mapping of uncharacteristically small 5q deletions in two patients with the 5q- syndrome: delineation of the critical region on 5q and identification of a 5q- breakpoint. Genomics. 1994; 19: 425-32
|
|
|
16) Jaju RJ, Boultwood J, Oliver FJ, et al. Molecular cytogenetic delineation of the critical region in the 5q- syndrome. Genes Chrom Cancer. 1998; 22: 251-6
|
|
|
17) Boultwood J, Fidler C, Strickson AJ, et al. Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood. 2002; 99: 4638-41
|
|
|
18) Horrigan SK, Westbrook CA, Kim AH, et al. Polymerase chain reaction-based diagnosis of del(5q) in acute myeloid leukemia and myelodysplastic syndrome identifies a minimal deletion interval. Blood. 1996; 88: 2665-70
|
|
|
19) Zhao N, Stoffel A, Wang PW, et al. Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1-1. 5 Mb and preparation of a PAC-based physical map. Proc Natl Acad Sci U S A. 1997; 94: 6948-53
|
|
|
20) Horrigan SK, Arbieva ZH, Xie HY, et al. Delineation of a minimal interval and identification of 9 candidates for a tumor suppressor gene in malignant myeloid disorders on 5q31. Blood. 2000; 95: 2372-7
|
|
|
21) Giagounidis AAN, Germing U, Aul C. Biological and prognostic significance of chromosome 5q deletions in myeloid malignancies. Clin Cancer Res. 2006; 12: 5-10
|
|
|
22) Pellagatti A, Jadersten M, Forsblom AM, et al. Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci U S A. 2007; 104: 11406-11
|
|
|
23) Bartlett JB, Dredge K, Dalgleish AG. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer. 2004; 4: 314-22
|
|
|
24) Raza A, Meyer P, Dutt D, et al. Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood. 2001; 98: 958-65
|
|
|
25) Raza A, Lisak L, Billmeier J, et al. Phase II study of topotecan and thalidomide in patients with high-risk myelodysplastic syndromes. Leuk Lymphoma. 2006; 47: 433-40
|
|
|
26) Musto P, Falcone A, Sanpaolo G, et al. Combination of erythropoietin and thalidomide for the treatment of anemia in patients with myelodysplastic syndromes. Leukemia Res. 2006; 30: 385-8
|
|
|
27) List A, Kurtin S, Roe DJ, et al. Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med. 2005; 352: 549-57
|
|
|
28) Cheson BD, Bennett JM, Kantarjian H, et al. Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood. 2000; 96: 3671-4
|
|
|
29) List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006; 355: 1456-65
|
|
|
30) Giagounidis AA, Haase S, Heinsch M, et al. Lenalidomide in the context of complex karyotype or interrupted treatment: case reviews of del(5q)MDS patients with unexpected responses. Ann Hematol. 2007; 86: 133-7
|
|
|
31) Richardson PG, Schlossman RL, Weller E, et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood. 2002; 100: 3063-7
|
|
|
32) Gandhi AK, Kang J, Naziruddin S, et al. Lenalidomide inhibits proliferation of Namalwa CSN. 70 cells and interferes with Gab1 phosphorylation and adaptor protein complex assembly. Leukemia Res. 2006; 30: 849-58
|
|
|