1) Nishimura J, Kanakura Y, Ware RE, et al. Clinical course and flow cytometric analysis of paroxysmal nocturnal hemoglobinuria in the United States and Japan. Medicine (Baltimore). 2004; 83: 193-207
|
|
|
2) Parker C, Omine M, Richards S, et al. Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood. 2005; 106: 3699-709
|
|
|
3) Almeida AM, Murakami Y, Layton DM, et al. Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency. Nat Med. 2006; 12: 846-51
|
|
|
4) Tanaka S, Maeda Y, Tashima Y, et al. Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem. 2004; 279: 14256-63
|
|
|
5) Tashima Y, Taguchi R, Murata C, et al. PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol Biol Cell. 2006; 17: 1410-20
|
|
|
6) Maeda Y, Tashima Y, Houjou T, et al. Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol Biol Cell. 2007; 18: 1497-506
|
|
|
7) Kawagoe K, Kitamura D, Okabe M, et al. GPI-anchor deficient mice: Implications for clonal dominance of mutant cells in paroxysmal nocturnal hemoglobinuria. Blood. 1996; 87: 3600-6
|
|
|
8) Takeda J, Miyata T, Kawagoe K, et al. Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell. 1993; 73: 703-11
|
|
|
9) Murakami Y, Siripanyaphinyo U, Hong Y, et al. The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol Biol Cell. 2005; 16: 5236-46
|
|
|
10) Maeda Y, Watanabe R, Harris CL, et al. PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J. 2001; 20: 250-61
|
|
|
11) Maeda Y, Tanaka S, Hino J, et al. Human dolichol-phosphate-mannose synthase consists of three subunits, DPM1, DPM2 and DPM3. EMBO J. 2000; 19: 2475-82
|
|
|
12) Dancourt J, Vuillaumier-Barrot S, de Baulny HO, et al. A new intronic mutation in the DPM1 gene is associated with a milder form of CDG Ie in two French siblings. Pediatr Res. 2006; 59: 835-9
|
|
|
13) Schenk B, Imbach T, Frank CG, et al. MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J Clin Invest. 2001; 108: 1687-95
|
|
|
14) Maeda Y, Ashida H, Kinoshita T. CHO glycosylation mutants: GPI anchor. Methods Enzymol. 2006; 416: 182-205
|
|
|
15) Araten DJ, Nafa K, Pakdeesuwan K, et al. Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci U S A. 1999; 96: 5209-14
|
|
|
16) Hu R, Mukhina GL, Piantadosi S, et al. PIG-A mutations in normal hematopoiesis. Blood. 2005; 105: 3848-54
|
|
|
17) Rosti V, Tremmi G, Soares V, et al. Murine embryonic stem cells without pig-a gene activity are competent for hematopoiesis with the PNH phenotype but not for clonal expansion. J Clin Invest. 1997; 100: 1028-36
|
|
|
18) Murakami Y, Kinoshita T, Maeda Y, et al. Different roles of glycosylphosphatidylinositol in various hematopoietic cells as revealed by model mice of paroxysmal nocturnal hemoglobinuria. Blood. 1999; 94: 2963-70
|
|
|
19) Tremml G, Dominguez C, Rosti V, et al. Increased sensitivity to complement and a decreased red cell life span in mice mosaic for a non-functional Piga gene. Blood. 1999; 94: 2945-54
|
|
|
20) Keller P, Tremml G, Rosti V, et al. X inactivation and somatic cell selection rescue female mice carrying a Piga-null mutation. Proc Natl Acad Sci U S A. 1999; 96: 7479-83
|
|
|
21) Azenishi Y, Ueda E, Machii T, et al. CD59-deficient blood cells and PIG-A gene abnormalities in Japanese patients with aplastic anaemia. Br J Haematol. 1999; 104: 523-9
|
|
|
22) Dunn DE, Tanawattanacharoen P, Boccuni P, et al. Paroxysmal nocturnal hemoglobinuria cells in patients with bone marrow failure syndromes. Ann Intern Med. 1999; 131: 401-8
|
|
|
23) Wang H, Chuhjo T, Yamazaki H, et al. Relative increase of granulocytes with a paroxysmal nocturnal haemoglobinuria phenotype in aplastic anaemia patients: the high prevalence at diagnosis. Eur J Haematol. 2001; 66: 200-5
|
|
|
24) Wang H, Chuhjo T, Yasue S, et al. Clinical significance of a minor population of paroxysmal nocturnal hemoglobinuria-type cells in bone marrow failure syndrome. Blood. 2002; 100: 3897-902
|
|
|
25) Sugimori C, Chuhjo T, Feng X, et al. Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood. 2006; 107: 1308-14
|
|
|
26) Maciejewski JP, Follmann D, Nakamura R, et al. Increased frequency of HLA-DR2 in patients with paroxysmal nocturnal hemoglobinuria and the PNH/aplastic anemia syndrome. Blood. 2001; 98: 3513-9
|
|
|
27) Shichishima T, Okamoto M, Ikeda K, et al. HLA class II haplotype and quantitation of WT1 RNA in Japanese patients with paroxysmal nocturnal hemoglobinuria. Blood. 2002; 100: 22-8
|
|
|
28) Karadimitris A, Manavalan JS, Thaler HT, et al. Abnormal T-cell repertoire is consistent with immune process underlying the pathogenesis of paroxysmal nocturnal hemoglobinuria. Blood. 2000; 96: 2613-20
|
|
|
29) Murakami Y, Kosaka H, Maeda Y, et al. Inefficient response of T lymphocytes to GPI-anchor-negative cells: implications for paroxysmal nocturnal hemoglobinuria. Blood. 2002; 100: 4116-22
|
|
|
30) Feng X, Chuhjo T, Sugimori C, et al. Diazepam-binding inhibitor-related protein 1: a candidate autoantigen in acquired aplastic anemia patients harboring a minor population of paroxysmal nocturnal hemoglobinuria-type cells. Blood. 2004; 104: 2425-31
|
|
|
31) Takamatsu H, Feng X, Chuhjo T, et al. Specific antibodies to moesin, a membrane-cytoskeleton linker protein, are frequently detected in patients with acquired aplastic anemia. Blood. 2007; 109: 2514-20
|
|
|
32) Risitano AM, Kook H, Zeng W, et al. Oligoclonal and polyclonal CD4 and CD8 lymphocytes in aplastic anemia and paroxysmal nocturnal hemoglobinuria measured by V beta CDR3 spectratyping and flow cytometry. Blood. 2002; 100: 178-83
|
|
|
33) Poggi A, Negrini S, Zocchi MR, et al. Patients with paroxysmal nocturnal hemoglobinuria have a high frequency of peripheral-blood T cells expressing activating isoforms of inhibiting superfamily receptors. Blood. 2005; 106: 2399-408
|
|
|
34) Gargiulo L, Lastraioli S, Cerruti G, et al. Highly homologous T-cell receptor beta sequences support a common target for autoreactive T cells in most patients with paroxysmal nocturnal hemoglobinuria. Blood. 2007; 109: 5036-42
|
|
|
35) Nagakura S, Ishihara S, Dunn DE, et al. Decreased susceptibility of leukemic cells with PIG-A mutation to natural killer cells in vitro. Blood. 2002; 100: 1031-7
|
|
|
36) Hanaoka N, Kawaguchi T, Horikawa K, et al. Immunoselection by natural killer cells of PIGA mutant cells missing stress-inducible ULBP. Blood. 2006; 107: 1184-91
|
|
|
37) Nishimura J, Inoue N, Wada H, et al. A patient with paroxysmal nocturnal hemoglobinuria bearing four independent PIG-A mutant clones. Blood. 1997; 89: 3470-6
|
|
|
38) Borrmann L, Wilkening S, Bullerdiek J. The expression of HMGA genes is regulated by their 3'UTR. Oncogene. 2001; 20: 4537-41
|
|
|
39) Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007; 315: 1576-9
|
|
|
40) Inoue N, Izui-Sarumaru T, Murakami Y, et al. Molecular basis of clonal expansion of hematopoiesis in 2 patients with paroxysmal nocturnal hemoglobinuria (PNH). Blood. 2006; 108: 4232-6
|
|
|
41) Hess JL, Kossev P. Molecular genetics of benign tumors. Cancer Invest. 2002; 20: 362-72
|
|
|
42) Reeves R. Molecular biology of HMGA proteins: hubs of nuclear function. Gene. 2001; 277: 63-81
|
|
|
43) Schoenmakers EF, Wanschura S, Mols R, et al. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nat Genet. 1995; 10: 436-44
|
|
|
44) Fedele M, Battista S, Manfioletti G, et al. Role of the high mobility group A proteins in human lipomas. Carcinogenesis. 2001; 22: 1583-91
|
|
|
45) Fedele M, Battista S, Kenyon L, et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene. 2002; 21: 3190-8
|
|
|
46) Ligon AH, Moore SD, Parisi MA, et al. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am J Hum Genet. 2005; 76: 340-8
|
|
|
47) Andrieux J, Demory JL, Dupriez B, et al. Dysregulation and overexpression of HMGA2 in myelofibrosis with myeloid metaplasia. Genes Chromosomes Cancer. 2004; 39: 82-7
|
|
|
48) Odero MD, Grand FH, Iqbal S, et al. Disruption and aberrant expression of HMGA2 as a consequence of diverse chromosomal translocations in myeloid malignancies. Leukemia. 2005; 19: 245-52
|
|
|
49) Ikeda K, Shichishima T, Yasukawa M, et al. The role of Wilms' tumor gene peptide-specific cytotoxic T lymphocytes in immunologic selection of a paroxysmal nocturnal hemoglobinuria clone. Exp Hematol. 2007; 35: 618-26
|
|
|
50) Li L, He S, Sun JM, et al. Gene regulation by Sp1 and Sp3. Biochem Cell Biol. 2004; 82: 460-71
|
|
|
51) Bouwman P, Philipsen S. Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol. 2002; 195: 27-38
|
|
|
52) Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003; 133: 2485S-93S
|
|
|
53) Almeida AM, Murakami Y, Baker A, et al. Targeted therapy for inherited GPI deficiency. N Engl J Med. 2007; 356: 1641-7
|
|
|
54) Hillmen P, Young NS, Schubert J, et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006; 355: 1233-43
|
|
|