1) Cooke JP, Rossitch E Jr, Andon NA, et al. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest. 1991; 88: 1663-71
|
|
|
2) Korenaga R, Ando J, Tsuboi H, et al. Laminar flow stimulates ATP- and shear stress-dependent nitric oxide production in cultured bovine endothelial cells. Biochem Biophys Res Commun. 1994; 198: 213-9
|
|
|
3) Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol. 2003; 285: C499-508
|
|
|
4) Michel J, Feron O, Sacks D, et al. Reciprocal regulation of endothelial nitric oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem. 1997; 272: 15583-6
|
|
|
5) Cao S, Yao J, McCabe TJ. Direct interaction between endothelial nitric-oxide synthase and dynamin-2. Implications for nitric-oxide synthase function. J Biol Chem. 2001; 276: 14249-56
|
|
|
6) Sun J, Liao JK. Functional interaction of endo-thelial nitric oxide synthase with a voltage-depen-dent anion channel. Proc Natl Acad Sci U S A. 2002; 99: 13108-13
|
|
|
7) Ayajiki K, Kindermann M, Hecker M, et al. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res. 1996; 78: 750-8
|
|
|
8) Corson MA, Berk BC, Navas JP, et al. Phosphory-lation of endothelial nitric oxide synthase in response to shear stress. Circ Res. 1996; 79: 984-91
|
|
|
9) Fleming I, Bauersachs J, Fisslthaler B, et al. Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phospha-tase inhibitors and fluid shear stress. Circ Res. 1998; 82: 686-95
|
|
|
10) Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999; 399: 601-5
|
|
|
11) Zhang Y, Lee T-S, Kolb EM, et al. AMP-activated protein kinase is involved in endothelial NO synthase activation in response to shear stress. Arterioscler Thromb Vasc Biol. 2006; 26: 1281-7
|
|
|
12) Nishida K, Harrison DG, Navas JP, et al. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest. 1992; 90: 2092-6
|
|
|
13) Davis ME, Cai H, Drummond GR, et al. Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ Res. 2001; 89: 1073-80
|
|
|
14) Weber M, Hagedorn CH, Harrison DG, et al. Laminar shear stress and 3' plyadenylation of eNOS mRNA. Circ Res. 2005; 96: 1161-8
|
|
|
15) Yamamoto K, Korenaga R, Kamiya A, et al. P2X(4) receptors mediate ATP-induced calcium influx in human vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2000; 279: H285-92
|
|
|
16) Yamamoto K, Korenaga R, Kamiya A, et al. Fluid shear stress activates Ca2+ influx into human endothelial cells via P2X4 purinoceptors. Circ Res. 2000; 87: 385-91
|
|
|
17) Yamamoto K, Sokabe T, Ohura N, et al. Endogenously released ATP mediates shear stress-induced Ca2+ influx into pulmonary artery endothelial cells. Am J Physiol Heart Circ Physiol. 2003; 285: H793-803
|
|
|
18) Yamamoto K, Sokabe T, Matsumoto T, et al. Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice. Nat Med. 2006; 12: 133-7
|
|
|
19) Rudic RD, Shesely EG, Maeda N, et al. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J Clin Invest. 1998; 101: 731-6
|
|
|
20) Yu J, Bergaya S, Murata T, et al. Direct evidence for the role of caveolin-1 and caveolae in mech-anotransduction and remodeling of blood vessels. J Clin Invest. 2006; 116: 1284-91
|
|
|