1) Miake J, Marban E, Nuss HB. Biological pacemaker created by gene transfer. Nature. 2002; 419: 132-3
|
|
|
2) Miake J, Marban E, Nuss HB. Functional role of inward rectifier current in heart probed by Kir2. 1 overexpression and dominant-negative suppression. J Clin Invest. 2003; 111: 1529-36
|
|
|
3) Qu J, Plotnikov AN, Danilo P Jr, et al. Expression and function of a biological pacemaker in canine heart. Circulation. 2003; 107: 1106-9
|
|
|
4) Plotnikov AN, Sosunov EA, Qu J, et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation. 2004; 109: 506-12
|
|
|
5) Bucchi A, Plotnikov AN, Shlapakova I, et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation. 2006; 114: 992-9
|
|
|
6) Tse HF, Xue T, Lau CP, et al. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation. 2006; 114: 1000-11
|
|
|
7) Kashiwakura Y, Cho HC, Barth AS, et al. Gene transfer of a synthetic pacemaker channel into the heart: a novel strategy for biological pacing. Circulation. 2006; 114: 1682-6
|
|
|
8) Potapova I, Plotnikov A, Lu Z, et al. Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res. 2004; 94: 952-9
|
|
|
9) Plotnikov AN, Shlapakova I, Szabolcs MJ, et al. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation. 2007; 116: 706-13
|
|
|
10) Cho HC, Kashiwakura Y, Marban E. Creation of a biological pacemaker by cell fusion. Circ Res. 2007; 100: 1112-5
|
|
|
11) Maltsev VA, Wobus AM, Rohwedel J, et al. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res. 1994; 75: 233-44
|
|
|
12) He JQ, Ma Y, Lee Y, et al. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res. 2003; 93: 32-9
|
|
|
13) Hidaka K, Lee JK, Kim HS, et al. Chamber-specific differentiation of Nkx2. 5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J. 2003; 17: 740-2
|
|
|
14) Schwanke K, Wunderlich S, Reppel M, et al. Generation and characterization of functional cardiomyocytes from rhesus monkey embryonic stem cells. Stem Cells. 2006; 24: 1423-32
|
|
|
15) Hakuno D, Fukuda K, Makino S, et al. Bone marrow-derived regenerated cardiomyocytes (CMG cells) express functional adrenergic and muscarinic receptors. Circulation. 2002; 105: 380-6
|
|
|
16) Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999; 103: 697-705
|
|
|
17) Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004; 428: 664-8
|
|
|
18) Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004; 428: 668-73
|
|
|
19) Rubart M, Soonpaa MH, Nakajima H, et al. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J Clin Invest. 2004; 114: 775-83
|
|
|
20) Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation. 2005; 111: 11-20
|
|
|
21) Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol. 2004; 22: 1282-9
|
|
|
22) Choi YH, Stamm C, Hammer PE, et al. Cardiac Conduction through Engineered Tissue. Am J Pathol. 2006; 169: 72-85
|
|
|
23) Stagg MA, Coppen SR, Suzuki K, et al. Evaluation of frequency, type, and function of gap junctions between skeletal myoblasts overexpressing connexin43 and cardiomyocytes: relevance to cell transplantation. FASEB J. 2006; 20: 744-6
|
|
|
24) Beeres SLMA, Atsma DE, van der Laarse A, et al. Human adult bone marrow mesenchymal stem cells repair experimental conduction block in rat cardiomyocyte cultures. J Am Coll Cardiol. 2005; 46: 1943-52
|
|
|
25) van Veen TAB, de Bakker JMT, van der Heyden MAG. Mesenchymal stem cells repair conduction block. J Am Coll Cardiol. 2006; 48: 219-20
|
|
|
26) Mikawa T, Gourdie RG, Takebayashi-Suzuki K, et al. Induction and patterning of the Purkinje fibre network. Novartis Found Symp. 2003; 250: 142- 53
|
|
|
27) Rentschler S, Zander J, Meyers K, et al. Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc Natl Acad Sci U S A. 2002; 99: 10464-9
|
|
|
28) Patel R, Kos L. Endothelin-1 and Neuregulin-1 convert embryonic cardiomyocytes into cells of the conduction system in the mouse. Dev Dyn. 2005; 233: 20-8
|
|
|
29) Mommersteeg MT, Hoogaars WM, Prall OW, et al. Molecular pathway for the localized formation of the sinoatrial node. Circ Res. 2007; 100: 354- 62
|
|
|
30) Mikawa T, Hurtado R. Development of the cardiac conduction system. Semin Cell Dev Biol. 2007; 18: 90-100
|
|
|