1) Kriz W, Kaissling B. Structure organization of the mammalian kidney. In: Seldin DW, Giebisch G. editors. The Kidney: Physiology and Pathophysiology. New York: Raven Press; 1985. p. 265 -306
|
|
|
2) Guyton AC. Theory for autoregulation of glomerular filtration rate and blood flow in each nephron by the juxtaglomerular apparatus (Abstract). Physiologist. 1963; 6: 194
|
|
|
3) Thurau K. Fundamentals of renal circulation. In: Proc. 2nd Int Cong Nephrol, Prague. Amsterdam: Excerpta Med; 1963: p. 51-61
|
|
|
4) Blantz RC. Making sense of the sensor: mysteries of the macula densa. Kidney Int. 2006; 70: 828-30
|
|
|
5) Komlosi P, Fintha A, Bell PD. Current mecha-nisms of macula densa cell signalling. Acta Physiol Scand. 2004; 181: 463-9
|
|
|
6) Persson AEG, Ollerstam A, Liu R, et al. Mech-anisms for macula densa cell release of renin. Acta Physiol Scand. 2004; 181: 471-4
|
|
|
7) Matsunaga H, Yamashita N, Okuda T, et al. Mesangial cell ion transport and tubulo-glomerular feedback. Curr Opin Nephrol Hypertens. 1994; 3: 518-22
|
|
|
8) Ren Y, Carretero OA, Garvin JL. Role of mesan-gial cells and gap junctions in tubuloglomerular feedback. Kidney Int. 2002; 62: 525-31
|
|
|
9) Yao J, Zhu Y, Morioka T, et al. Pathophysiological roles of gap junction in glomerular mesangial cells. J Membr Biol. 2007; [Epub ahead of print
|
|
|
10) Peti-Peterdi J. Calcium wave of tubuloglomerular feedback. Am J Physiol. 2006; 291: F473-80
|
|
|
11) Kirk KL, Bell PD, Barfuss DW, et al. Direct visualization of the isolated and perfused macula densa. Am J Physiol. 1985; 248: F890-4
|
|
|
12) Gonzalez E, Salomonsson M, Muller-Suur C, et al. Measurements of macula densa cell volume changes in isolated and perfused rabbit cortical thick ascending limb. II. Apical and basolateral cell osmotic water permeabilities. Acta Physiol Scand. 1988; 133: 159-66
|
|
|
13) Gonzalez E, Salomonsson M, Muller-Suur C, et al. Measurements of macula densa cell volume changes in isolated and perfused rabbit cortical thick ascending limb. I. Isosmotic and anisosmotic cell volume changes. Acta Physiol Scand. 1988; 133: 149-57
|
|
|
14) Greger R, Schlatter E. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch. 1983; 396: 315-24
|
|
|
15) Kaissling B, Kriz W. Variability of intercellular spaces between macula densa cells: a transmission electron microscopic study in rabbits and rats. Kidney Int Suppl. 1982; 12: S9-17
|
|
|
16) Komlosi P, Fintha A, Bell PD. Unraveling the relationship between macula densa cell volume and luminal solute concentration/osmolality. Kidney Int. 2006; 70: 865-71
|
|
|
17) Yasuoka Y, Kawada H, Suzuki Y, et al. Establishment of a mouse macula densa cell line with an nNOS promoter driving EGFP expression. Jpn J Physiol. 2005; 55: 365-72
|
|
|
18) Kawada H, Yasuoka Y, Fukuda H, et al. Expression of aquaporin-1 in a newly established cell line of mouse macula densa. In. 5th Int Conf Aquaporin. 2007. 123 (Abstr)
|
|
|
19) Paillard M. Na+/H+ exchanger subtypes in the renal tubule: function and regulation in physiology and disease. Exp Nephrol. 1997; 5: 277-84
|
|
|
20) Peti-Peterdi J, Chambrey R, Bebok Z, et al. Macula densa Na+/H+ exchange activities mediated by apical NHE2 and basolateral NHE4 isoforms. Am J Physiol. 2000; 278: F452-63
|
|
|
21) Liu R, Carretero OA, Ren Y, et al. Increased intracellular pH at the macula densa activates nNOS during tubuloglomerular feedback. Kidney Int. 2005; 67: 1837-43
|
|
|
22) Wang H, Carretero OA, Garvin JL. Inhibition of apical Na+/H+ exchangers on the macula densa cells augments tubuloglomerular feedback. Hypertens. 2003; 41: 688-91
|
|
|
23) Brunet GM, Gagnon E, Simard CF, et al. Novel insights regarding the operational characteristics and teleological purpose of the renal Na+-K+-Cl2 cotransporter (NKCC2s) splice variants. J Gen Physiol. 2005; 126: 325-37
|
|
|
24) Oppermann M, Mizel D, Kim SM, et al. Renal function in mice with targeted disruption of the A isoform of the Na-K-2Cl co-transporter. J Am Soc Nephrol. 2007; 18: 440-8
|
|
|
25) Oppermann M, Mizel D, Huang G, et al. Macula densa control of renin secretion and preg-lomerular resistance in mice with selective dele-tion of the B isoform of the Na, K, 2Cl co-trans-porter. J Am Soc Nephrol. 2006; 17: 2143-52
|
|
|
26) Schnermann J, Marver D. ATPase activity in macula densa cells of the rabbit kidney. Pflugers Arch. 1986; 407: 82-6
|
|
|
27) Peti-Peterdi J, Bebok Z, Lapointe JY, et al. Novel regulation of cell [Na+] in macula densa cells: apical Na+ recycling by H-K-ATPase. Am J Physiol. 2002; 282: F324-9
|
|
|
28) Lorenz JN, Dostanic-Larson I, Shull GE, et al. Ouabain inhibits tubuloglomerular feedback in mutant mice with ouabain-sensitiveα1 Na, K-ATPase. J Am Soc Nephrol. 2006; 17: 2457-63
|
|
|
29) 安岡有紀子, 川田英明, 河原克雅. NE-MD細胞におけるNa+輸送関連分子の発現解析. Jpn J Nephrol. 2007; 49: 254 (Abstr)
|
|
|
30) Lapointe JY, Bell PD, Hurst AM, et al. Basolateral ionic permeabilities of macula densa cells. Am J Physiol. 1991; 260: F856-60
|
|
|
31) Tian W, Salanova M, Xu H, et al. Renal expression of osmotically responsive cation channel TRPV4 is restricted to water-impermeant nephron segments. Am J Physiol. 2004; 287: F17-24
|
|
|
32) Lapointe JY, Bell PD, Sabirov RZ, et al. Calcium-activated nonselective cationic channel in macula densa cells. Am J Physiol. 2003; 285: F275-80
|
|
|
33) Bell PD, Lapointe JY, Sabirov R, et al. Macula densa cell signaling involves ATP release through a maxi anion channel. Proc Natl Acad Sci U S A. 2003; 100: 4322-7
|
|
|
34) Komlosi P, Peti-Peterdi J, Fuson AL, et al. Macula densa basolateral ATP release is regulated by luminal [NaCl] and dietary salt intake. Am J Physiol. 2004; 286: F1054-8
|
|
|
35) Salomonsson M, Gonzalez E, Kornfeld M, et al. The cytosolic chloride concentration in macula densa and cortical thick ascending limb cells. Acta Physiol Scand. 1993; 147: 305-13
|
|
|
36) Ren Y, Liu R, Carretero OA, et al. Increased intracellular Ca++ in the macula densa regulates tubuloglomerular feedback. Kidney Int. 2003; 64: 1348-55
|
|
|
37) Peti-Peterdi J, Komlosi P, Fuson AL, et al. Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells. J Clin Invest. 2003; 112: 76-82
|
|
|
38) Castrop H. Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol (Oxf). 2007; 189: 3-14
|
|
|
39) Schnermann J, Osswald H, Hermle M. Inhibitory effect of methylxanthines on feedback control of glomerular filtration rate in the rat kidney. Pflugers Arch. 1977; 369: 39-48
|
|
|
40) Hansen PB, Castrop H, Briggs J, et al. Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice. J Am Soc Nephrol. 2003; 14: 2457-65
|
|
|
41) Thomson S, Bao D, Deng A, et al. Adenosine formed by 5'-nucleotidase mediates tubulo-glomerular feedback. J Clin Invest. 2000; 106: 289-98
|
|
|
42) Schnermann JB, Traynor T, Yang T, et al. Absence of tubuloglomerular feedback responses in AT1A receptor-deficient mice. Am J Physiol. 1997; 273: F315-20
|
|
|
43) Nishiyama A, Navar LG. ATP mediates tubuloglomerular feedback. Am J Physiol. 2002; 283: R273-5
|
|
|
44) Inscho EW, Cook AK. P2 receptor-mediated afferent arteriolar vasoconstriction during calcium blockade. Am J Physiol. 2002; 282: F245-55
|
|
|
45) Inscho EW, Cook AK, Navar LG. Pressure-mediated vasoconstriction of juxtamedullary afferent arterioles involves P2-purinoceptor activation. Am J Physiol. 1996; 271: F1077-85
|
|
|
46) Inscho EW, Cook AK, Imig JD, et al. Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior. J Clin Invest. 2003; 112: 1895-905
|
|
|
47) Nishiyama A, Jackson KE, Majid DS, et al. Renal interstitial fluid ATP responses to arterial pressure and tubuloglomerular feedback activation during calcium channel blockade. Am J Physiol. 2006; 290: H772-7
|
|
|
48) Schnermann J, Levine DZ. Paracrine factors in tubuloglomerular feedback: adenosine, ATP, and nitric oxide. Annu Rev Physiol. 2003; 65: 501-29
|
|
|
49) Persson AEG, Brown R, Liu R, et al. Nitric oxide modulates and adenosine mediates the tubuloglomerular feedback mechanism. Acta Physiol Scand. 2002; 176: 91-4
|
|
|
50) Liu R, Ren Y, Garvin JL, et al. Superoxide enhances tubuloglomerular feedback by constricting the afferent arteriole. Kidney Int. 2004; 66: 268-74
|
|
|
51) Wang H, Garvin JL, Carretero OA. Angiotensin II enhances tubuloglomerular feedback via luminal AT1 receptors on the macula densa. Kidney Int. 2001; 60: 1851-7
|
|
|
52) Hansen PB, Hashimoto S, Oppermann M, et al. Vasoconstrictor and vasodilator effects of adeno-sine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther. 2005; 315: 1150-7
|
|
|
53) Harris RC, Zhang MZ, Cheng HF. Cyclooxygenase-2 and the renal renin-angiotensin system. Acta Physiol Scand. 2004; 181: 543-7
|
|
|
54) Fletcher JT, Graf N, Scarman A, et al. Nephro-toxicity with cyclooxygenase 2 inhibitor use in children. Pediatr Nephrol. 2006; 21: 1893-7
|
|
|
55) Ren Y, Garvin JL, Liu R, et al. Possible mechanism of efferent arteriole (Ef-Art) tubuloglomerular feedback. Kidney Int. 2007; 71: 861-6
|
|
|