1) Dustin ML. Coordination of T cell activation and migration through formation of the immuno-logical synapse. Ann NY Acad Sci. 2003; 987: 51-9
|
|
|
2) Weiss A, Samelson LE. T-lymphcyte activation. In: Paul WE. editor. Fundamental Immunology. Philadelphia: Lippincott; 2003. p321-63
|
|
|
3) Cambell PM, Halloran P. T cell activation. In: Tilney NL, Strom TB, Paul LC. editors. Transplantation Biology?Cellular and Molecular Aspects. Philadelphia; Lippincott: 1996. p. 411-34
|
|
|
4) Gomperts BD, Klamer IJM, Tatham PER. 非受容体型チロシンキナーゼによるシグナル伝達経路. シグナル伝達 (Signal Transduction, by Gomperts BD, Klamer IJM, Tatham PER), 上代淑人, 監訳. 東京: メディカル・サイエンス・インターナショナル; 2004. p. 287-301
|
|
|
5) Gomperts BD, Klamer IJM, Tatham PER. 蛋白質の脱リン酸とリン酸化. シグナル伝達(Signal Transduction, by Gomperts BD, Klamer IJM, Tatham PER), 上代淑人, 監訳. メディカル・サイエンス・インターナショナル; 東京: 2004. p. 375-95
|
|
|
6) Lodish H, Berk A, Zipursky SL, et al. Cell-to-cell signaling: Hormones and receptors. In: Lodish H, Berk A, Zipursky SL, et al. editors. Molecular Cell Biology. W. H. Freeman; 2000. p. 848-909
|
|
|
7) Gomperts BD, Klamer IJM, Tatham PER. リン酸化と脱リン酸: プロテインキナーゼAとプロテインキナーゼC. シグナル伝達 (Signal Transduction, by Gomperts BD, Klamer IJM, Tatham PER), 上代淑人, 監訳. 東京: メディカル・サイエンス・インターナショナル; 2004. p. 191-226
|
|
|
8) Gomperts BD, Klamer IJM, Tatham PER. 受容体型チロシンキナーゼによるシグナル伝達経路. シグナル伝達(Signal Transduction, by Gomperts BD, Klamer IJM, Tatham PER), 上代淑人, 監訳. 東京: メディカル・サイエンス・インターナショナル; 2004. p. 259-85
|
|
|
9) Sanchez-Lockhart M, Marin E, Miller J, et al. Cutting edge: CD28-mediated transcriptional and posttranscriptional regulation of IL-2 expression are controlled through different signaling pathways. J Immunol. 2004; 173: 7120-4
|
|
|
10) 辻野志穂, 谷口維紹. IL-2シグナル伝達と非受容体型チロシンキナーゼ. 細胞のシグナリング. Molecular Medicine. (臨時増刊号, 西塚泰美, 貝淵弘三, 丸山 敬, 編). 1999; 36: 386-93
|
|
|
11) Minami Y, Nakagawa Y, Kawahara A, et al. Protein tyrosine kinase Syk is associated with and activated by the IL-2 receptor: Possible link with the c-myc induction pathway. Immunity 1995; 2: 89-100
|
|
|
12) Leonard WJ. Type 1 cytokines and interferons and their receptors. In: Paul WE. editor. Fundamental Immunology. Philadelphia: Lippincott; 2003. p. 701-73
|
|
|
13) Cooper GM, Hausman RE. Cell signaling. In: Cooper GM, Hausman RE. editors. The Cell?A Molecular approach. Washington: ASM Press; 2007. p. 599-648
|
|
|
14) Nourse J, Firpo E, Flanagan WM, et al. Interleukin-2-mediated elimination of the p27Kipl cyclin-dependent kinase inhibitor prevented by rapamycin. Nature. 1994; 372: 570-3
|
|
|
15) Takeshita T, Asano H, Ohtani K, et al. Cloning of the γchain of the human IL-2 receptor. Science. 1992; 257: 379-82
|
|
|
16) Miyazaki T, Kawahara A, Fujii H, et al. Func-tional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science. 1994; 266: 1045-7
|
|
|
17) Takeshita T, Arita T, Higuchi, et al. STAM, signal transducing adaptor molecule, is associated with Janus kinases and involved in signaling for cell growth and c-myc induction. Immunity. 1997; 6: 449-57
|
|
|
18) Miyazaki T, Takaoka A, Nogueira L, et al. Pyk2 is a down-stream mediator of the IL-2-coupled Jak signaling pathway. Genes Dev. 1998; 12: 770-5
|
|
|
19) Cooper GM, Hausman RE. Cell death and cell renewal. In: Cooper GM, Hausman RE. editors. The Cell?A Molecular approach. Washington: ASM Press; 2007. p. 689-718
|
|
|
20) 神田善伸. 抗CD52モノクローナル抗体(Alemtuzumab: Campath H, MabCampath). In: 元吉和夫, 大野竜三, 編. 分子標的治療薬?作用機序と臨床. 東京: メディカルレビュー社; 2005. p. 185-92
|
|
|
21) Calne RY, Susan D, Waldmann H, et al. Campath 1H allows low-dose cyclosporine monotherapy in 31 cadaveric renal allograft recipients. Transplantation. 1999; 68: 1613-6
|
|
|
22) Knechtle SJ, Pirsch JD, Sollinger HW, et al. A pilot study of Campath-1H induction plus Rapamycin monotherapy in renal trans-plantation. [abstract 45]. Transplantation. 2002; 74: 32-3
|
|
|
23) 寺岡 慧, 加藤容二郎, 渕之上昌平, 他. mTOR阻害剤エベロリムスの腎臓移植における使用経験. 今日の移植. 2006; 19: 190-8
|
|
|
24) Abrahamian GA, Cosimi AB. Antilymphocyte globulin and monoclonal antibodies. In: Morris PJ. editor. Kidney transplantation. Principles and practice. Saunders; 2001. p. 289-309
|
|
|
25) Abramowicz D, Sehandere L, Goldman M. Release of tumor necrosis factor, interleukin-2 and gamma interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation. 1989; 47: 606-8
|
|
|
26) Friend PJ, Hale G, Waldemann H, et al. Phase 1 study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection. Transplantation. 1999; 68: 1632-7
|
|
|
27) Norman DJ, Vincenti F, Light SE, et al. Phase 1 trial of HuM291, a humanized anti-CD3 antibody, in patients receiving renal allografts from living donors. Transplantation. 2000; 70: 1707-12
|
|
|
28) Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med. 1998; 338: 1813-21
|
|
|
29) Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA-4G with potent immunosuppressive properties. Am J Transplant. 2005; 5: 443-53
|
|
|
30) Vincenti F, Larsen C, Charpentier B, et al. Costimulation blockade with belatacept in renal transplantation. 2006; 353: 770-81
|
|
|
31) Matthews J, Ramos E, Bluestone A. Clinical trials of transplant tolerance: slow but steady progress. Am J Transplant. 2003; 3: 794-803
|
|
|
32) Adams AB, Shirasugi N, Durtham MM, et al. Carcineurin inhibitor-free CD28 blockade-based protocol protects allogeneic islets in nonhuman primates. Diabetes. 2002; 51: 262-70
|
|
|
33) Kirk AD, Tadaki DK, Harlan DM, et al. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation. 2001; 72: 377-84
|
|
|
34) Bashuda H, Kimikawa M, Okumura K, et al. Renal allograft rejection is prevented by adoptive transfer of anergic T cells in nonhuman primates. J Clin Invest. 2005; 115: 1896-902
|
|
|
35) Reff ME, Carner K, Chambers KS, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody CD20. Blood. 1994; 83: 435-45
|
|
|
36) Sawada T, Fuchinoue S, Teraoka S. Successful A1-to-O ABO-incompatible kidney transplan-tation after a preconditioning regimen consisting of anti-CD20 monoclonal antibody infusions, splenectomy and double-filtration plasma-pheresis. Transplantation. 2002; 74: 1207-10
|
|
|
37) Kahan BD, Ponticelli C, Kelly P. Immuno-suppressive drugs: pharmacology. In: Kahan BD, Ponticelli C. editors. Principles and practice of renal transplantation. London: Martin Dunitz; 2000. p. 251-314
|
|
|
38) Kahan BD, Ponticelli. Established immuno-suppressive drugs: clinical and toxic effects. In: Kahan BD, Ponticelli C. editors. Principles and Practice of Renal Transplantation. London: Martin Dunitz; 2000. p. 349-414
|
|
|
39) Teraoka S, Sato S, Fuchinoue S, et al. Comparative study of clinical outcome in kidney transplantation between early steroid withdrawal protocol using basiliximab, calcineurin inhibitor and mycophenolate mofetil and steroid. Transplant Proc. 2005; 37: 791-4
|
|
|
40) Evenou JP, Brinkmann V, Zenke G, et al. Enzymatic and cellular characterization of NVP-AEB071, a novel and selective protein kinase C (PKC) inhibitor that blocks early T cell activation, and its use to define the role of PKC in T cells. Abstracts the 2006 World Transplant Congress
|
|
|
41) Bruns Ch, Pally C, Morris R, et al. NVP-AEB071, a novel oral inhibitor of early T-cell activation, prolongs rat cardiac allograft survival when used alone and in combination with cyclosporine, everolimus or FTY720. Abstracts the 2006 World Transplant Congress
|
|
|
42) Slade A, Bartlett M, Schmouder R, et al. NVP-AEB071 pharmacokinetics: combination with everolimus does not result in clinically relevant interaction. Abstracts the 2006 World Transplant Congress
|
|
|
43) Papageorgiou AC, Wikman LEK. Is Jak3 a new drug target for immunomodulation-based therapies? TRENDS in Pharmacological Sciences. 2004; 25: 558-62
|
|
|
44) Benbernou N, Muegge K, Durum S. Interleukin (IL)-7 induces rapid activation of Pyk2, which is bound to Janus kinase 1 and IL-7α. J Biolog Chemistry. 2000; 275: 7060-5
|
|
|
45) Cetkovic-Cvrlje M, Tibbles HE. Therapeutic potential of Janus kinase 3 (Jak3) inhibitors. Curr Pharmaceutical Design. 2004; 10: 1767-84
|
|
|
46) Kudlacz E, Perry B, Changelian P, et al. The novel Jak-3 inhibitor CP-690550 is a potent immunosuppressive agent in various murine models. Am J Transplant. 2004; 4: 51-7
|
|
|
47) Changelian PS, Flanagan ME, Borie DC, et al. Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science. 2003; 302: 875-8
|
|
|
48) Borie DC, Changelian PS, Morris RE, et al. Immunosuppression by the Jak3 inhibitor CP-690, 550 delays rejection and significantly prolongs kidney allograft survival in nonhuman primates. Transplantation. 2005; 79: 791-801
|
|
|
49) Leventhal J, Busue S, Chan G, et al (A3921021 Study Group). 12-month follow up of phase 2A trial of CP690550, a Jak3 inhibitor, in de novo kidney transplant recipients. Abstracts 13th ESOT Congress & 15th ETCO Congress, 2007
|
|
|