1) Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate/anion exchanger that regulates blood urate levels. Nature. 2002; 417: 447-52
|
|
|
2) Anzai N, Kanai Y, Endou H. New insights into renal transport of urate. Curr Opin Rheumatol. 2007; 19: 151-7
|
|
|
3) 榎本 篤, 細山田真, 遠藤 仁. 腎臓における尿酸輸送機構. In: 伊藤克己, 浅野 泰, 遠藤 仁, 御手洗哲也, 東原英二, 編. Annual Review腎臓 2003. 東京: 中外医学社; 2003. p. 201-4
|
|
|
4) 安西尚彦, 宮崎博喜, 遠藤 仁. 尿酸トランスポーターの分子生物学. 生化学. 2004; 76: 101-10
|
|
|
5) Hediger MA, et al. Molecular physiology of urate transport. Physiology (Bethesda). 2005; 20: 125-33
|
|
|
6) Anzai, N, Enomoto A, Endou H. Renal urate handling: clinical relevance of recent advances. Curr Rheumatol Rep. 2005; 7: 227-34
|
|
|
7) Sekine T, Watanabe N, Hosoyamada M, et al. Expression cloning and characterization of a novel multispecific organic anion transporter. J Biol Chem. 1997; 272: 18526-9
|
|
|
8) Anzai N, Kanai Y, Endou H. Organic anion transporter family: current knowledge. J Pharmacol Sci. 2006; 100: 411-26
|
|
|
9) Kobayashi Y, Ohshiro N, Sakai R, et al. Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol. 2005; 57: 573-8
|
|
|
10) Kimura H, Ichida K, Hosoyamada M, et al. Urate transport via hOAT4. 痛風と核酸代謝. 2001; 25: 113-20
|
|
|
11) Hagos Y, Stein D, Ugele B, et al. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007; 18: 430-9
|
|
|
12) Sato M, Iwanaga T, Mamada H, et al. Involve-ment of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res. 2007. In press
|
|
|
13) Imaoka T, Kusuhara H, Adachi-Akahane S, et al. The renal-specific transporter mediates facilitative transport of organic anions at the brush border membrane of mouse renal tubules. J Am Soc Nephrol. 2004; 15: 2012-22
|
|
|
14) Iwanaga T, Kobayashi D, Hirayama M, et al. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab Dispos. 2005; 33: 1791-5
|
|
|
15) Anzai N, Nilwarangkoon S, Miura D, et al. Human urate transporter URAT1 mediates the transport of salicylate. J Pharmacol Sci. 2007; 103: 148
|
|
|
16) Anzai N, Miura D, Nilwarangkoon S, et al. Human urate transporter URAT1 mediates orotic acid transport. J Physiol Sci. 2007; 57: S76
|
|
|
17) Jutabha P, Kanai Y, Hosoyamada H, et al. Identification of a novel voltage-driven organic anion transporter present at apical membrane of renal proximal tubule. J Biol Chem. 2003; 278: 27930-8
|
|
|
18) Uchino H, Tamai I, Yamashita K, et al. p-aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem Biophys Res Commun. 2000; 270: 254-9
|
|
|
19) van Aubel RA, Smeets PH, van den Heuvel JJ, et al. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol. 2005; 288: F327-33
|
|
|
20) Gopal E, Fei YJ, Sugawara M, et al. Expression of slc5a8 in kidney and its role in Na(+)-coupled transport of lactate. J Biol Chem. 2004; 279: 44522-32
|
|
|
21) Zandi-Nejad K, Plata C, Enck AH, et al. Slc5a8 functions as a sodium-dependent pyrazionate and nicoftinate cotransporter; Implications for renal urate transport. J Am Soc Nephrol. 2004; 15: 89A
|
|
|
22) Ichida K, Hosoyamada M, Hisatome I, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004; 15: 164-73
|
|
|
23) Anzai N, Miyazaki H, Noshiro R, et al. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J Biol Chem. 2004; 279: 45942-50
|
|
|
24) 安西尚彦, 宮崎博喜, 遠藤 仁. 細胞内結合タンパクによる膜輸送体機能制御. In: 伊藤克己, 遠藤 仁, 御手洗哲也, 東原英二, 秋澤忠男, 編. Annual Review腎臓 2004. 東京: 中外医学社. 2004: p. 15-21
|
|
|
25) Miyazaki H, Anzai N, Ekaratanawong S, et al. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J Am Soc Nephrol. 2005; 16: 3498-506
|
|
|
26) Noshiro R, Anzai N, Sakata T, et al. The PDZ domain protein PDZK1 interacts with human peptide transporter PEPT2 and enhances its transport activity. Kidney Int. 2006; 70: 275-82
|
|
|
27) Anzai N, Jutabha P, Kanai Y, et al. Integrated physiology of proximal tubular organic anion transport. Curr Opin Nephrol Hypertens. 2005; 14: 472-9
|
|
|
28) Jutabha P, Chairoungdua A, Anzai N, et al. The voltage-driven organic anion transport of type I sodium-phosphate cotransporter and OATv1. FASEB J. 2006; 20: A1235
|
|
|
29) Anzai N, Miyazaki H, He X, et al. Identification of the multivalent PDZ domain protein PDZK1 as a binding partner of sodium-coupled mono-carboxylate cotransporter 1 (SMCT1). J Am Soc Nephrol. 2006; 17: 753A
|
|
|
30) Thangaraju M, Ananth S, Martin PM, et al. c/ebpdelta Null mouse as a model for the double knock-out of slc5a8 and slc5a12 in kidney. J Biol Chem. 2006; 281: 26769-73
|
|
|
31) Sperling O. Hereditary renal hypouricemia. Mol Genet Metab. 2006; 89: 14-8
|
|
|
32) Tanaka M, Itoh K, Matsushita K, et al. Two male siblings with hereditary renal hypouricemia and exercise-induced ARF. Am J Kidney Dis. 2003; 42: 1287-92
|
|
|
33) Iwai N, Mino Y, Hosoyamada M, et al. A high prevalence of renal hypouricemia caused by inactive SLC22A12 in Japanese. Kidney Int. 2004; 66: 935-44
|
|
|
34) Komoda F, Sekine T, Inatomi J, et al. The W258X mutation in SLC22A12 is the predominant cause of Japanese renal hypouricemia. Pediatr Nephrol. 2004; 19: 728-33
|
|
|
35) 鎌谷直之. 家族性若年性高尿酸血症性腎症. 腎と透析. 2003; 55: 339-44
|
|
|
36) Hart TC, Gorry MC, Hart PS, et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med Genet. 2002; 39: 882-92
|
|
|
37) Muchmore AV, Decker JM. Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science. 1985; 229: 479-81
|
|
|
38) Wyne KL. Metabolic syndrome: demographic features, etiology, and clinical management. Curr Atheroscler Rep. 2005; 7: 381-8
|
|
|
39) Leslie BR. Metabolic syndrome: historical perspectives. Am J Med Sci. 2005; 330: 264-8
|
|
|
40) Nakagawa T, Hu H, Zharikov S, et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol. 2006; 290: F625-31
|
|
|
41) Anzai N, Endou H. Durg discovery for hyper-uricemia. Expert Opin Drug Discov. 2007; 2: 1251-61
|
|
|