医中誌リンクサービス


文献リスト

1) Murer H, Forster I, Biber J. Proximal tubular phosphate reabsorption; molecular mechanisms. Physiol Rev. 2000; 80: 1373-409
PubMed
医中誌リンクサービス
2) Miyamoto K, Segawa H, Ito M, et al. Physio-logical regulation of renal sodium-dependent phosphate cotransporters. Jpn J Physiol. 2004; 54: 93-102
医学中央雑誌刊行会  PubMed CrossRef J-Stage
医中誌リンクサービス
3) Beck L, Karaplis AC, Amizuka N, et al. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1998; 95: 5372-7
PubMed CrossRef
医中誌リンクサービス
4) Tenenhouse HS, Martel J, Gauthier C, et al. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol. 2003; 285: F1271-8
医中誌リンクサービス
5) Miyamoto K, Ito M, Tatsumi S, et al. New aspect of renal phosphate reabsorption: The type IIc sodium-dependent phosphate transporter. Am J Nephrol. In press
医中誌リンクサービス
6) Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006; 78: 193-201
PubMed CrossRef
医中誌リンクサービス
7) Bergwitz C, Roslin NM, Tieder M, et al. SLC34A3 mutations in patients with hereditary hypo-phosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotrans-porter NaPi-IIc in maintaining phosphate home-ostasis. Am J Hum Genet. 2006; 78: 179-92
PubMed CrossRef
医中誌リンクサービス
8) Segawa H, Kaneko I, Setsuko Y, et al. Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol. 2004; 287: F39-47
PubMed CrossRef
医中誌リンクサービス
9) Segawa H, Yamanaka S, Onitsuka A, et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Renal Physiol. 2007; 292: F395-403
PubMed
医中誌リンクサービス
10) Segawa H, Yamanaka S, Ito M, et al. Internal-ization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol. 2005; 288: F587-96
PubMed CrossRef
医中誌リンクサービス
11) ADHR Consortium. Autosomal dominant hypo-phosphataemic rickets is associated with muta-tions in FGF23. Nat Genet. 2000; 26: 345-8
PubMed CrossRef
医中誌リンクサービス
12) Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001; 98: 6500-5
PubMed CrossRef
医中誌リンクサービス
13) Tenenhouse HS, Martel J, Gauthier C, et al. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol. 2003; 285: F1271-8
PubMed
医中誌リンクサービス
14) Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner. Res. 2004; 19: 429-35. Epub 2003 Dec 29
医中誌リンクサービス
15) Saito H, Kusano K, Kinosaki M, et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha, 25-dihydroxyvitamin D3 production. J Biol Chem. 2003; 278: 2206-11
PubMed CrossRef
医中誌リンクサービス
16) Saito H, Kusano K, Kinosaki M, et al. Circulating FGF-23 is regulated by 1alpha, 25-dihydroxy-vitamin D3 and phosphorus in vivo. J Biol Chem. 2005; 280: 2543-9
PubMed
医中誌リンクサービス
17) Inoue Y, Segawa H, Kaneko I, et al. Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J. 2005; 390: 325-31
PubMed CrossRef
医中誌リンクサービス
18) Yu X, White KE. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev. 2005; 16: 221-32
PubMed CrossRef
医中誌リンクサービス
19) Berndt T, Kumar R. Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol. 2007; 69: 341-59
PubMed CrossRef
医中誌リンクサービス
20) Ito M, Sakai Y, Furumoto M, et al. Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells. Am J Physiol Endocrinol Metab. 2005; 288: E1101-9
PubMed CrossRef
医中誌リンクサービス
21) Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45-51
PubMed CrossRef
医中誌リンクサービス
22) Segawa H, Yamanaka S, Ohno Y, et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol. 2007; 292: F769-79
PubMed
医中誌リンクサービス
23) Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006; 444: 770-4
PubMed CrossRef
医中誌リンクサービス
24) Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004; 113: 561-8
PubMed CrossRef
医中誌リンクサービス
25) Razzaque MS, Sitara D, Taguchi T, et al. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D- mediated process. FASEB J. 2006; 20: 720-2
PubMed
医中誌リンクサービス
26) Razzaque MS, Lanske B. Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice. Trends Mol Med. 2006; 12: 298-305
PubMed CrossRef
医中誌リンクサービス
27) Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006; 281: 6120-3
PubMed CrossRef
医中誌リンクサービス
28) Ito S, Fujimori T, Furuya A, et al. Impaired negative feedback suppression of bile acid synthesis in mice lacking beta-Klotho in mice lacking beta-Klotho. J Clin Invest. 2005; 115: 2202-8
PubMed CrossRef
医中誌リンクサービス
29) Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of FGF19 subfamily members. Mol Cell Biol. 2007; 27: 3417-28. Epub 2007 Mar 5
PubMed CrossRef
医中誌リンクサービス
30) Imura A, Tsuji Y, Murata M, et al. alpha-Klotho as a regulator of calcium homeostasis. Science. 2007; 316: 1615-8
PubMed CrossRef
医中誌リンクサービス
31) Chang Q, Hoefs S, van der Kemp AW, et al. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005; 310: 490-3
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp