1) Murer H, Forster I, Biber J. Proximal tubular phosphate reabsorption; molecular mechanisms. Physiol Rev. 2000; 80: 1373-409
|
|
|
2) Miyamoto K, Segawa H, Ito M, et al. Physio-logical regulation of renal sodium-dependent phosphate cotransporters. Jpn J Physiol. 2004; 54: 93-102
|
|
|
3) Beck L, Karaplis AC, Amizuka N, et al. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1998; 95: 5372-7
|
|
|
4) Tenenhouse HS, Martel J, Gauthier C, et al. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol. 2003; 285: F1271-8
|
|
|
5) Miyamoto K, Ito M, Tatsumi S, et al. New aspect of renal phosphate reabsorption: The type IIc sodium-dependent phosphate transporter. Am J Nephrol. In press
|
|
|
6) Lorenz-Depiereux B, Benet-Pages A, Eckstein G, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet. 2006; 78: 193-201
|
|
|
7) Bergwitz C, Roslin NM, Tieder M, et al. SLC34A3 mutations in patients with hereditary hypo-phosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotrans-porter NaPi-IIc in maintaining phosphate home-ostasis. Am J Hum Genet. 2006; 78: 179-92
|
|
|
8) Segawa H, Kaneko I, Setsuko Y, et al. Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol. 2004; 287: F39-47
|
|
|
9) Segawa H, Yamanaka S, Onitsuka A, et al. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am J Physiol Renal Physiol. 2007; 292: F395-403
|
|
|
10) Segawa H, Yamanaka S, Ito M, et al. Internal-ization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol. 2005; 288: F587-96
|
|
|
11) ADHR Consortium. Autosomal dominant hypo-phosphataemic rickets is associated with muta-tions in FGF23. Nat Genet. 2000; 26: 345-8
|
|
|
12) Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001; 98: 6500-5
|
|
|
13) Tenenhouse HS, Martel J, Gauthier C, et al. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol. 2003; 285: F1271-8
|
|
|
14) Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner. Res. 2004; 19: 429-35. Epub 2003 Dec 29
|
|
|
15) Saito H, Kusano K, Kinosaki M, et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha, 25-dihydroxyvitamin D3 production. J Biol Chem. 2003; 278: 2206-11
|
|
|
16) Saito H, Kusano K, Kinosaki M, et al. Circulating FGF-23 is regulated by 1alpha, 25-dihydroxy-vitamin D3 and phosphorus in vivo. J Biol Chem. 2005; 280: 2543-9
|
|
|
17) Inoue Y, Segawa H, Kaneko I, et al. Role of the vitamin D receptor in FGF23 action on phosphate metabolism. Biochem J. 2005; 390: 325-31
|
|
|
18) Yu X, White KE. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev. 2005; 16: 221-32
|
|
|
19) Berndt T, Kumar R. Phosphatonins and the regulation of phosphate homeostasis. Annu Rev Physiol. 2007; 69: 341-59
|
|
|
20) Ito M, Sakai Y, Furumoto M, et al. Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells. Am J Physiol Endocrinol Metab. 2005; 288: E1101-9
|
|
|
21) Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390: 45-51
|
|
|
22) Segawa H, Yamanaka S, Ohno Y, et al. Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice. Am J Physiol Renal Physiol. 2007; 292: F769-79
|
|
|
23) Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006; 444: 770-4
|
|
|
24) Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004; 113: 561-8
|
|
|
25) Razzaque MS, Sitara D, Taguchi T, et al. Premature aging-like phenotype in fibroblast growth factor 23 null mice is a vitamin D- mediated process. FASEB J. 2006; 20: 720-2
|
|
|
26) Razzaque MS, Lanske B. Hypervitaminosis D and premature aging: lessons learned from Fgf23 and Klotho mutant mice. Trends Mol Med. 2006; 12: 298-305
|
|
|
27) Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006; 281: 6120-3
|
|
|
28) Ito S, Fujimori T, Furuya A, et al. Impaired negative feedback suppression of bile acid synthesis in mice lacking beta-Klotho in mice lacking beta-Klotho. J Clin Invest. 2005; 115: 2202-8
|
|
|
29) Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of FGF19 subfamily members. Mol Cell Biol. 2007; 27: 3417-28. Epub 2007 Mar 5
|
|
|
30) Imura A, Tsuji Y, Murata M, et al. alpha-Klotho as a regulator of calcium homeostasis. Science. 2007; 316: 1615-8
|
|
|
31) Chang Q, Hoefs S, van der Kemp AW, et al. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science. 2005; 310: 490-3
|
|
|