1) Pritchard JB, Miller DS. Mechanisms mediating renal secretion of organic anions and cations. Physiol Rev. 1993; 73: 765-96
|
|
|
2) Inui K, Okuda M. Cellular and molecular mechanisms of renal tubular secretion of organic anions and cations. Clin Exp Nephrol. 1998; 2: 100-8
|
|
|
3) Inui K, Takano M, Hori R. Organic cation transport in the renal brush-border and basolateral membranes. In: Hatano M. editors. Nephrology. Tokyo: Springer-Verlag; 1991. p. 1391-8
|
|
|
4) Inui K, Masuda S, Saito H. Cellular and molecular aspects of drug transport in the kidney. Kidney Int. 2000; 58: 944-58
|
|
|
5) Burckhardt G, Wolff NA. Structure of renal organic anion and cation transporters. Am J Physiol Renal Physiol. 2000; 278: F853-66
|
|
|
6) Jonker JW, Schinkel AH. Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther. 2004; 308: 2-9
|
|
|
7) Wright SH. Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics. Toxicol Appl Pharmacol. 2005; 204: 309-19
|
|
|
8) Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physio-logical roles, and biopharmaceutical implications. Pharm Res. 2007; 24: 1227-51
|
|
|
9) Otsuka M, Matsumoto T, Morimoto R, et al. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A. 2005; 102: 17923-8
|
|
|
10) Masuda S, Terada T, Yonezawa A, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol. 2006; 17: 2127-35
|
|
|
11) Terada T, Masuda S, Asaka J, et al. Molecular cloning, functional characterization and tissue distribution of rat H+/organic cation antiporter MATE1. Pharm Res. 2006; 23: 1696-701
|
|
|
12) Takano M, Inui K, Okano T, et al. Carrier-mediated transport systems of tetraethyl-ammonium in rat renal brush-border and basolateral membrane vesicles. Biochim Biophys Acta. 1984; 773: 113-24
|
|
|
13) Takano M, Inui K, Okano T, et al. Cimetidine transport in rat renal brush border and baso-lateral membrane vesicles. Life Sci. 1985; 37: 1579-85
|
|
|
14) Grundemann D, Gorboulev V, Gambaryan S, et al. Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994; 372: 549-52
|
|
|
15) Okuda M, Saito H, Urakami Y, et al. cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun. 1996; 224: 500-7
|
|
|
16) Grundemann D, Babin-Ebell J, Martel F, et al. Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J Biol Chem. 1997; 272: 10408-13
|
|
|
17) Tamai I, Yabuuchi H, Nezu J, et al. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 1997; 419: 107-11
|
|
|
18) Tamai I, Nakanishi T, Kobayashi D, et al. Involvement of OCTN1 (SLC22A4) in pH-dependent transport of organic cations. Mol Pharm. 2004; 1: 57-66
|
|
|
19) Motohashi H, Sakurai Y, Saito H, et al. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol. 2002; 13: 866-74
|
|
|
20) Grundemann D, Harlfinger S, Golz S, et al. Discovery of the ergothioneine transporter. Proc Natl Acad Sci U S A. 2005; 102: 5256-61
|
|
|
21) Tamai I, Ohashi R, Nezu J, et al. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem. 1998; 273: 20378-82
|
|
|
22) Nezu J, Tamai I, Oku A, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nature Genet. 1999; 21: 91-4
|
|
|
23) Ohashi R, Tamai I, Yabuuchi H, et al. Na+-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999; 291: 778-84
|
|
|
24) Ohashi R, Tamai I, Nezu J, et al. Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol Pharmacol. 2001; 59: 358-66
|
|
|
25) Ohnishi S, Saito H, Fukada A, et al. Distinct transport activity of tetraethylammonium from L-carnitine in rat renal brush-border membranes. Biochim Biophys Acta. 2003; 1609: 218-24
|
|
|
26) Ohta K, Inoue K, Hayashi Y, et al. Molecular identification and functional characterization of rat multidrug and toxin extrusion type trans-porter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab Dispos. 2006; 34: 1868-74
|
|
|
27) Zhang X, Cherrington NJ, Wright SH. Molecular identification and functional characterization of rabbit MATE1 and MATE2-K. Am J Physiol Renal Physiol. 2007; 293: F360-70
|
|
|
28) Hiasa M, Matsumoto T, Komatsu T, et al. Wide variety of locations for rodent MATE1, a transporter protein that mediates the final excretion step for toxic organic cations. Am J Physiol Cell Physiol. 2006; 291: C678-86
|
|
|
29) Nishihara K, Masuda S, Ji L, et al. Pharmaco-kinetic significance of luminal multidrug and toxin extrusion 1 in chronic renal failure rats. Biochem Pharmacol. 2007; 73: 1482-90
|
|
|
30) Omote H, Hiasa M, Matsumoto T, et al. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci. 2006; 27: 587-93
|
|
|
31) Tanihara Y, Masuda S, Sato T, et al. Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. Biochem Pharmacol. 2007; 74: 359-71
|
|
|
32) Yonezawa A, Masuda S, Yokoo S, et al. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther. 2006; 319: 879-86
|
|
|
33) Yokoo S, Yonezawa A, Masuda S, et al. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol. 2007; 74: 477-87
|
|
|
34) Tsuda M, Terada T, Asaka J, et al. Oppositely directed H+ gradient functions as a driving force of rat H+/organic cation antiporter MATE1. Am J Physiol Renal Physiol. 2007; 292: F593-8
|
|
|
35) Hori R, Maegawa H, Kato M, et al. Inhibitory effect of diethyl pyrocarbonate on the H+/organic cation antiport system in rat renal brush-border membranes. J Biol Chem. 1989; 264: 12232-7
|
|
|
36) Hori R, Maegawa H, Okano T, et al. Effect of sulfhydryl reagents on tetraethylammonium transport in rat renal brush border membranes. J Pharmacol Exp Ther. 1987; 241: 1010-6
|
|
|
37) Asaka J, Terada T, Tsuda M, et al. Identification of essential histidine and cysteine residues of the H+/organic cation antiporter multidrug and toxin extrusion (MATE). Mol Pharmacol. 2007; 71: 1487-93
|
|
|
38) Yonezawa A, Masuda S, Nishihara K, et al. Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat. Biochem Pharmacol. 2005; 70: 1823-31
|
|
|