医中誌リンクサービス


文献リスト

1)Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell. 2001; 104: 517-29
PubMed CrossRef
医中誌リンクサービス
2)Rizza RA. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes. 2010; 59: 2697-707
PubMed CrossRef
医中誌リンクサービス
3)Trinh KY, O?Doherty RM, Anderson P, et al. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem. 1998; 273: 31615-20
PubMed CrossRef
医中誌リンクサービス
4)Valera A, Pujol A, Pelegrin M, et al. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci U S A. 1994; 91: 9151-4
PubMed CrossRef
医中誌リンクサービス
5)O?Brien RM, Granner DK. Regulation of gene expression by insulin. Physiol Rev. 1996; 76: 1109-61
PubMed
医中誌リンクサービス
6)Altarejos JY, Montminy M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol. 2011; 12: 141-51
PubMed CrossRef
医中誌リンクサービス
7)Wang Y, Li G, Goode J, et al. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature. 2012; 485: 128-32
PubMed CrossRef
医中誌リンクサービス
8)Lerin C, Rodgers JT, Kalume DE, et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab. 2006; 3: 429-38
PubMed CrossRef
医中誌リンクサービス
9)Sakai M, Matsumoto M, Tujimura T, et al. CITED2 links hormonal signaling to PGC-1alpha acetylation in the regulation of gluconeogenesis. Nat Med. 2012; 18: 612-7
PubMed CrossRef
医中誌リンクサービス
10)Jager S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007; 104: 12017-22
PubMed CrossRef
医中誌リンクサービス
11)Puigserver P, Rhee J, Lin J, et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell. 2001; 8: 971-82
PubMed CrossRef
医中誌リンクサービス
12)Cao W, Collins QF, Becker TC, et al. p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J Biol Chem. 2005; 280: 42731-7
PubMed CrossRef
医中誌リンクサービス
13)Ruan HB, Han X, Li MD, et al. O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1alpha stability. Cell Metab. 2012; 16: 226-37
PubMed CrossRef
医中誌リンクサービス
14)Teyssier C, Ma H, Emter R, et al. Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev. 2005; 19: 1466-73
PubMed CrossRef
医中誌リンクサービス
15)Rytinki MM, Palvimo JJ. SUMOylation attenuates the function of PGC-1alpha. J Biol Chem. 2009; 284: 26184-93
PubMed CrossRef
医中誌リンクサービス
16)Nakae J, Kitamura T, Silver DL, et al. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001; 108: 1359-67
PubMed CrossRef
医中誌リンクサービス
17)Ozcan L, Wong CC, Li G, et al. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. 2012; 15: 739-51
PubMed CrossRef
医中誌リンクサービス
18)Mihaylova MM, Vasquez DS, Ravnskjaer K, et al. Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell. 2011; 145: 607-21
PubMed CrossRef
医中誌リンクサービス
19)Ravnskjaer K, Hogan MF, Lackey D, et al. Glucagon regulates gluconeogenesis through KAT2B- and WDR5-mediated epigenetic effects. J Clin Invest. 2013; 123: 4318-28
PubMed CrossRef
医中誌リンクサービス
20)Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001; 413: 131-8
PubMed CrossRef
医中誌リンクサービス
21)Lee MW, Chanda D, Yang J, et al. Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH. Cell Metab. 2010; 11: 331-9
PubMed CrossRef
医中誌リンクサービス
22)Opherk C, Tronche F, Kellendonk C, et al. Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol Endocrinol. 2004; 18: 1346-53
PubMed CrossRef
医中誌リンクサービス
23)Gerhart-Hines Z, Dominy JE Jr, Blattler SM, et al. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cell. 2011; 44: 851-63
PubMed CrossRef
医中誌リンクサービス
24)Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009; 458: 1056-60
PubMed CrossRef
医中誌リンクサービス
25)Banks AS, Kon N, Knight C, et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008; 8: 333-41
PubMed CrossRef
医中誌リンクサービス
26)Feige JN, Lagouge M, Canto C, et al. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008; 8: 347-58
PubMed CrossRef
医中誌リンクサービス
27)Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005; 434: 113-8
PubMed CrossRef
医中誌リンクサービス
28)Erion DM, Yonemitsu S, Nie Y, et al. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats. Proc Natl Acad Sci U S A. 2009; 106: 11288-93
PubMed CrossRef
医中誌リンクサービス
29)Wang RH, Kim HS, Xiao C, et al. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest. 2011; 121: 4477-90
PubMed CrossRef
医中誌リンクサービス
30)Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci U S A. 2007; 104: 12861-6
PubMed CrossRef
医中誌リンクサービス
31)Chen D, Bruno J, Easlon E, et al. Tissue-specific regulation of SIRT1 by calorie restriction. Genes Dev. 2008; 22: 1753-7
PubMed CrossRef
医中誌リンクサービス
32)Qiang L, Lin HV, Kim-Muller JY, et al. Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab. 2011; 14: 758-67
PubMed CrossRef
医中誌リンクサービス
33)Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature. 2008; 456: 269-73
PubMed CrossRef
医中誌リンクサービス
34)Matsumoto M, Pocai A, Rossetti L, et al. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxo1 in liver. Cell Metab. 2007; 6: 208-16
PubMed CrossRef
医中誌リンクサービス
35)Li X, Monks B, Ge Q, et al. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature. 2007; 447: 1012-6
PubMed CrossRef
医中誌リンクサービス
36)Rodgers JT, Haas W, Gygi SP, et al. Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell Metab. 2010; 11: 23-34
PubMed CrossRef
医中誌リンクサービス
37)Lustig Y, Ruas JL, Estall JL, et al. Separation of the gluconeogenic and mitochondrial functions of PGC-1{alpha} through S6 kinase. Genes Dev. 2011; 25: 1232-44
PubMed CrossRef
医中誌リンクサービス
38)Lee Y, Dominy JE, Choi YJ, et al. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature. 2014; 510: 547-51
PubMed CrossRef
医中誌リンクサービス
39)Zhou XY, Shibusawa N, Naik K, et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med. 2004; 10: 633-7
PubMed CrossRef
医中誌リンクサービス
40)He L, Sabet A, Djedjos S, et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell. 2009; 137: 635-46
PubMed CrossRef
医中誌リンクサービス
41)Matsumoto M, Ogawa W, Akimoto K, et al. PKClambda in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity. J Clin Invest. 2003; 112: 935-44
PubMed CrossRef
医中誌リンクサービス
42)Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol. 2007; 8: 774-85
PubMed CrossRef
医中誌リンクサービス
43)Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2010; 120: 2355-69
PubMed CrossRef
医中誌リンクサービス
44)Koo SH, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 2005; 437: 1109-11
PubMed CrossRef
医中誌リンクサービス
45)Dentin R, Liu Y, Koo SH, et al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature. 2007; 449: 366-9
PubMed CrossRef
医中誌リンクサービス
46)Patel K, Foretz M, Marion A, et al. The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nat Commun. 2014; 5: 4535
PubMed
医中誌リンクサービス
47)Shu Y, Sheardown SA, Brown C, et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest. 2007; 117: 1422-31
PubMed CrossRef
医中誌リンクサービス
48)Pernicova I, Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014; 10: 143-56
PubMed CrossRef
医中誌リンクサービス
49)Erion MD, van Poelje PD, Dang Q, et al. MB06322 (CS-917): A potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes. Proc Natl Acad Sci U S A. 2005; 102: 7970-5
PubMed CrossRef
医中誌リンクサービス
50)Miller RA, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature. 2013; 494: 256-60
PubMed CrossRef
医中誌リンクサービス
51)Madiraju AK, Erion DM, Rahimi Y, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014; 510: 542-6
PubMed CrossRef
医中誌リンクサービス
52)Ferrannini E. The target of metformin in type 2 diabetes. N Engl J Med. 2014; 371: 1547-8
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp