医中誌リンクサービス


文献リスト

1)Jenuwein T, Allis CD. Translating the histone code. Science. 2001; 293: 1074-80
PubMed CrossRef
医中誌リンクサービス
2)Yanazume T, Hasegawa K, Morimoto T, et al. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol. 2003; 23: 3593-606
PubMed CrossRef
医中誌リンクサービス
3)Zhang CL, McKinsey TA, Chang S, et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002; 110: 479-88
PubMed CrossRef
医中誌リンクサービス
4)Chandrasekaran S, Peterson RE, Mani SK, et al. Histone deacetylases facilitate sodium/calcium exchanger up-regulation in adult cardiomyocytes. FASEB J. 2009; 23: 3851-64
PubMed CrossRef
医中誌リンクサービス
5)Glenn DJ, Wang F, Chen S, et al. Endothelin-stimulated human B-type natriuretic peptide gene expression is mediated by yin yang 1 in association with histone deacetylase 2. Hypertension. 2009; 53: 549-55
PubMed CrossRef
医中誌リンクサービス
6)Trivedi CM, Luo Y, Yin Z, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med. 2007; 13: 324-31
PubMed CrossRef
医中誌リンクサービス
7)Zhu H, Shan L, Schiller PW, et al. Histone deacetylase-3 activation promotes tumor necrosis factor-alpha (TNF-alpha) expression in cardiomyocytes during lipopolysaccharide stimulation. J Biol Chem. 2010; 285: 9429-36
PubMed CrossRef
医中誌リンクサービス
8)Hohl M, Wagner M, Reil JC, et al. Hdac4 controls histone methylation in response to elevated cardiac load. J Clin Invest. 2013; 123: 1359-70
PubMed CrossRef
医中誌リンクサービス
9)Gallo P, Latronico MV, Gallo P, et al. Inhibition of class I histone deacetylase with an apicidin derivative prevents cardiac hypertrophy and failure. Cardiovasc Res. 2008; 80: 416-24
PubMed CrossRef
医中誌リンクサービス
10)Morimoto T, Sunagawa Y, Fujita M, et al. Novel heart failure therapy targeting transcriptional pathway in cardiomyocytes by a natural compound, curcumin. Circ J. 2010; 74: 1059-66
医学中央雑誌刊行会  PubMed CrossRef J-Stage
医中誌リンクサービス
11)Sunagawa Y, Morimoto T, Wada H, et al. A natural p300-specific histone acetyltransferase inhibitor, curcumin, in addition to angiotensin-converting enzyme inhibitor, exerts beneficial effects on left ventricular systolic function after myocardial infarction in rats. Circ J. 2011; 75: 2151-9
医学中央雑誌刊行会  PubMed CrossRef J-Stage
医中誌リンクサービス
12)Kao YH, Liou JP, Chung CC, et al. Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure. Int J cardiol. 2013; 168: 4178-83
PubMed CrossRef
医中誌リンクサービス
13)Williams SM, Golden-Mason L, Ferguson BS, et al. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol. 2014; 67: 112-25
PubMed CrossRef
医中誌リンクサービス
14)Nural-Guvener H, Zakharova L, Feehery L, et al. Anti-fibrotic effects of class I HDAC inhibitor, mocetinostat is associated with IL-6/Stat3 signaling in ischemic heart failure. Int J Mol Sci. 2015; 16: 11482-99
PubMed
医中誌リンクサービス
15)Kee HJ, Kook H. Kruppel-like factor 4 mediates histone deacetylase inhibitor-induced prevention of cardiac hypertrophy. J Mol Cell Cardiol. 2009; 47: 770-80
PubMed CrossRef
医中誌リンクサービス
16)Cao DJ, Wang ZV, Battiprolu PK, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci U S A. 2011; 108: 4123-8
PubMed CrossRef
医中誌リンクサービス
17)Zhang LX, Zhao Y, Cheng G, et al. Targeted deletion of NF-kappaB p50 diminishes the cardioprotection of histone deacetylase inhibition. Am J physiol Heart Circ physiol. 2010; 298: H2154-63
PubMed CrossRef
医中誌リンクサービス
18)Kong Y, Tannous P, Lu G, et al. Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation. 2006; 113: 2579-88
PubMed CrossRef
医中誌リンクサービス
19)Barter MJ, Pybus L, Litherland GJ, et al. HDAC-mediated control of ERK- and PI3K-dependent TGF-β-induced extracellular matrix-regulating genes. Matrix Biol. 2010; 29: 602-12
PubMed CrossRef
医中誌リンクサービス
20)Iyer A, Fenning A, Lim J, et al. Antifibrotic activity of an inhibitor of histone deacetylases in DOCA-salt hypertensive rats. Bri J Pharm. 2010; 159: 1408-17
医中誌リンクサービス
21)Tao R, de Zoeten EF, Ozkaynak E, et al. Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med. 2007; 13: 1299-307
PubMed CrossRef
医中誌リンクサービス
22)Samant SA, Courson DS, Sundaresan NR, et al. HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity. J Biol Chem. 2011; 286: 5567-77
PubMed CrossRef
医中誌リンクサービス
23)Ferguson BS, McKinsey TA. Non-sirtuin histone deacetylases in the control of cardiac aging. J Mol Cell Cardiol. 2015; 83: 14-20
PubMed CrossRef
医中誌リンクサービス
24)Matsuhashi T, Hishiki T, Zhou H, et al. Activation of pyruvate dehydrogenase by dichloroacetate has the potential to induce epigenetic remodeling in the heart. J Mol Cell Cardiol. 2015; 82: 116-24
PubMed CrossRef
医中誌リンクサービス
25)Larrieu D, Britton S, Demir M, et al. Chemical inhibition of NAT10 corrects defects of laminopathic cells. Science. 2014; 344: 527-32
PubMed CrossRef
医中誌リンクサービス
26)Montgomery RL, Davis CA, Potthoff MJ, et al. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007; 21: 1790-802
PubMed CrossRef
医中誌リンクサービス
27)Montgomery RL, Potthoff MJ, Haberland M, et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest. 2008; 118: 3588-97
PubMed CrossRef
医中誌リンクサービス
28)Trivedi CM, Lu MM, Wang Q, et al. Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J Biol Chem. 2008; 283: 26484-9
PubMed CrossRef
医中誌リンクサービス
29)McLendon PM, Ferguson BS, Osinska H, et al. Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy. Proc Natl Acad Sci U S A. 2014; 111: E5178-86
PubMed CrossRef
医中誌リンクサービス
30)Kaneda R, Takada S, Yamashita Y, et al. Genome-wide histone methylation profile for heart failure. Genes Cells. 2009; 14: 69-77
PubMed CrossRef
医中誌リンクサービス
31)Zhang QJ, Chen HZ, Wang L, et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest. 2011; 121: 2447-56
PubMed CrossRef
医中誌リンクサービス
32)Stein AB, Jones TA, Herron TJ, et al. Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest. 2011; 121: 2641-50
PubMed CrossRef
医中誌リンクサービス
33)Balasubramanian S, Ramos J, Luo W, et al. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia. 2008; 22: 1026-34
PubMed CrossRef
医中誌リンクサービス
34)Movassagh M, Choy MK, Knowles DA, et al. Distinct epigenomic features in end-stage failing human hearts. Circulation. 2011; 124: 2411-22
PubMed CrossRef
医中誌リンクサービス
35)Haas J, Frese KS, Park YJ, et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med. 2013; 5: 413-29
PubMed CrossRef
医中誌リンクサービス
36)Nuhrenberg TG, Hammann N, Schnick T, et al. Cardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PloS One. 2015; 10: e0131019
CrossRef
医中誌リンクサービス
37)Wang J, Tang J, Lai M, et al. 5-hydroxymethylcytosine and disease. Mutat Res Rev Mutat Res. 2014; 762: 167-75
PubMed CrossRef
医中誌リンクサービス
38)Li W, Liu M. Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids. 2011; 2011: 870726
PubMed
医中誌リンクサービス
39)Grote P, Wittler L, Hendrix D, et al. The tissue-specific lncRNA fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013; 24: 206-14
PubMed CrossRef
医中誌リンクサービス
40)Han P, Li W, Lin CH, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014; 514: 102-6
PubMed CrossRef
医中誌リンクサービス
41)Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting mir-489. Circ Res. 2014; 114: 1377-88
PubMed CrossRef
医中誌リンクサービス
42)Kwon C, Han Z, Olson EN, et al. MicroRNA1 influences cardiac differentiation in drosophila and regulates notch signaling. Proc Natl Acad Sci U S A. 2005; 102: 18986-91
PubMed CrossRef
医中誌リンクサービス
43)Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007; 129: 303-17
PubMed CrossRef
医中誌リンクサービス
44)King IN, Qian L, Liang J, et al. A genome-wide screen reveals a role for microRNA-1 in modulating cardiac cell polarity. Dev Cell. 2011; 20: 497-510
PubMed CrossRef
医中誌リンクサービス
45)Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res. 2009; 104: 170-8, 6p following 178
PubMed CrossRef
医中誌リンクサービス
46)Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008; 15: 261-71
PubMed CrossRef
医中誌リンクサービス
47)Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008; 456: 980-4
PubMed CrossRef
医中誌リンクサービス
48)Patrick DM, Montgomery RL, Qi X, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest. 2010; 120: 3912-6
PubMed CrossRef
医中誌リンクサービス
49)Das S, Halushka MK. Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol. 2015; 24: 199-206
PubMed CrossRef
医中誌リンクサービス
50)Roncarati R, Viviani Anselmi C, Losi MA, et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2014; 63: 920-7
PubMed CrossRef
医中誌リンクサービス
51)Liu Y, Li L, Su Q, et al. Ultrasound-targeted microbubble destruction enhances gene expression of microRNA-21 in swine heart via intracoronary delivery. Echocardiography. 2015; 32: 1407-16
PubMed CrossRef
医中誌リンクサービス
52)Gill SL, O’Neill H, McCoy RJ, et al. Enhanced delivery of microRNA mimics to cardiomyocytes using ultrasound responsive microbubbles reverses hypertrophy in an in-vitro model. Technol Health Care. 2014; 22: 37-51
PubMed
医中誌リンクサービス
53)Haider S, Cordeddu L, Robinson E, et al. The landscape of DNA repeat elements in human heart failure. Genome Biol. 2012; 13: R90
PubMed
医中誌リンクサービス
54)Guelen L, Pagie L, Brasset E, et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature. 2008; 453: 948-51
PubMed CrossRef
医中誌リンクサービス
55)Eberhart A, Feodorova Y, Song C, et al. Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina. Chromosome Res. 2013; 21: 535-54
PubMed CrossRef
医中誌リンクサービス
56)Booth-Gauthier EA, Alcoser TA, Yang G, et al. Force-induced changes in subnuclear movement and rheology. Biophys J. 2012; 103: 2423-31
PubMed CrossRef
医中誌リンクサービス
57)Poh YC, Shevtsov SP, Chowdhury F, et al. Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nat Commun. 2012; 3: 866
PubMed
医中誌リンクサービス
58)Swift J, Ivanovska IL, Buxboim A, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science. 2013; 341: 1240104
PubMed CrossRef
医中誌リンクサービス
59)Ho CY, Jaalouk DE, Vartiainen MK, et al. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature. 2013; 497: 507-11
PubMed CrossRef
医中誌リンクサービス
60)Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab. 2012; 16: 9-17
PubMed CrossRef
医中誌リンクサービス
61)Nain S, Ling B, Bandy B, et al. The role of oxidative stress in the development of congestive heart failure in a chicken genotype selected for rapid growth. Avian pathol. 2008; 37: 367-73
PubMed CrossRef
医中誌リンクサービス
62)Kerins DM, Koury MJ, Capdevila A, et al. Plasma S-adenosylhomocysteine is a more sensitive indicator of cardiovascular disease than plasma homocysteine. Am J Clin Nutrit. 2001; 74: 723-9
医中誌リンクサービス
63)Xiao Y, Zhang Y, Wang M, et al. Plasma S-adenosylhomocysteine is associated with the risk of cardiovascular events in patients undergoing coronary angiography: A cohort study. Am J Clin Nutr. 2013; 98: 1162-9
PubMed CrossRef
医中誌リンクサービス
64)Kao YH, Lien GS, Chao TF, et al. DNA methylation inhibition: A novel therapeutic strategy for heart failure. Int J Cardiol. 2014; 176: 232-3
PubMed CrossRef
医中誌リンクサービス
65)Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010; 142: 375-86
PubMed CrossRef
医中誌リンクサービス
66)Muraoka N, Yamakawa H, Miyamoto K, et al. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J. 2014; 33: 1565-81
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp