医中誌リンクサービス


文献リスト

1)Vanholder R, Schepers E, Pletinck A, et al. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014; 25: 1897-907
PubMed CrossRef
医中誌リンクサービス
2)Vanholder R, Schepers E, Pletinck A, et al. An update on protein-bound uremic retention solutes. J Ren Nutr. 2012; 22: 90-4
PubMed CrossRef
医中誌リンクサービス
3)Saito S, Yisireyili M, Shimizu H, et al. Indoxyl sulfate upregulates prorenin expression via nuclear factor-κB p65, signal transducer and activator of transcription 3, and reactive oxygen species in proximal tubular cells. J Ren Nutr. 2015; 25: 145-8
PubMed CrossRef
医中誌リンクサービス
4)Barreto DV, Barreto FC, Liabeuf S, et al. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney Int. 2010; 77: 550-6
PubMed CrossRef
医中誌リンクサービス
5)Vanholder R, De Smet R, Glorieux G, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003; 63: 1934-43
PubMed CrossRef
医中誌リンクサービス
6)Evenepoel P, Meijers BK, Bammens BR, et al. Uremic toxins originating from colonic microbial metabolism. Kidney Int. 2009; 114: S12-9
医中誌リンクサービス
7)Ohshiro Y, Ma RC, Yasuda Y, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cb-null mice. Diabetes. 2006; 55: 3112-20
PubMed CrossRef
医中誌リンクサービス
8)Wu CT, Sheu ML, Tsai KS, et al. Salubrinal, an eIF2a dephosphorylation inhibitor, enhances cisplatin-induced oxidative stress and nephrotoxicity in a mouse model. Free Radic Biol Med. 2011; 51: 671-80
PubMed CrossRef
医中誌リンクサービス
9)Gill PS, Wilcox CS. NADPH oxidases in the kidney. Antioxid Redox Signal. 2006; 8: 1597-607
PubMed CrossRef
医中誌リンクサービス
10)Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 2008; 31: S170-80
PubMed CrossRef
医中誌リンクサービス
11)Sedeek M, Nasrallah R, Touyz RM, et al. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol. 2013; 24: 1512-8
PubMed CrossRef
医中誌リンクサービス
12)Winiarska K, Grabawski M, Rogacki MK. Inhibition of renal gluconeogenesis contributes to hypoglycaemic action of NADPH oxidase inhibitor, apocynin. Chem Biol Interact. 2011; 189: 119-26
PubMed CrossRef
医中誌リンクサービス
13)Fukuda M, Nakamura T, Kataoka K, et al. Potentiation by candesartan of protective effects of pioglitazone against type 2 diabetic cardiovascular and renal complications in obese mice. J Hypertens. 2010; 28: 340-52
PubMed CrossRef
医中誌リンクサービス
14)Sedeek M, Gallera G, Montezano A, et al. Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2010; 299: F1348-58
PubMed
医中誌リンクサービス
15)Jha JC, Gray SP, Barit D, et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase Nox4 provides renoprotection in long-termdiabetic nephropathy. J Am Soc Nephrol. 2014; 25: 1237-54
PubMed CrossRef
医中誌リンクサービス
16)Babelova A, Avaniadi D, Jung O, et al. Role of Nox4 in murine models of kidney disease. Free Radic Biol Med. 2012; 53: 842-53
PubMed CrossRef
医中誌リンクサービス
17)Nlandu Khodo S, Dizin E, Sossauer G, et al. NADPH-oxidase 4 protects against kidney fibrosis during chronic renal injury. J Am Soc Nephrol. 2012; 23: 1967-76
PubMed CrossRef
医中誌リンクサービス
18)Greene EL, Paller MS. Xanthine oxidase produces O2- in posthypoxic injuryof renal epithelial cells. Am J Physiol Renal Physiol. 1992; 263: F251-5
医中誌リンクサービス
19)Tsuda H, Kawada N, Kaimori JY, et al. Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress. Biochem Biophys Res Commun. 2012; 427: 266-72
PubMed CrossRef
医中誌リンクサービス
20)Gagliardi AC, Miname MH, Santos RD. Uric acid: a marker of increased cardiovascular risk. Atherosclerosis. 2009; 202: 11-7
PubMed CrossRef
医中誌リンクサービス
21)Choi Y, Kim HS, Lee J, et al. Down-regulation of oxidative stress and COX-2 and iNOS expressions by dimethyl lithospermate in aged rat kidney. Arch Pharm Res. 2014; 37: 1032-8
PubMed CrossRef
医中誌リンクサービス
22)Wu R, Duchemin S, Laplante MA, et al. Cyclo-oxygenase-2 knockout genotype in mice is associated with blunted angiotensin II-induced oxidative stress and hypertension. Am J Hypertens. 2011; 24: 1239-44
PubMed CrossRef
医中誌リンクサービス
23)Rutkowski P, Slominska EM, Szolkiewicz M, et al. Relationship between uremic toxins and oxidative stress in patients with chronic renal failure. Scand J Urol Nephrol. 2007; 41: 243-8
PubMed CrossRef
医中誌リンクサービス
24)Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med. 1994; 124: 96-104
PubMed
医中誌リンクサービス
25)Miyazaki T, Ise M, Seo H, et al. Indoxyl sulfate increases the gene expressions of TGF-beta1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney Int Suppl. 1997; 62: S15-22
PubMed
医中誌リンクサービス
26)Sun CY, Hsu HH, Wu MS. p-Cresol sulfate and indoxyl sulfate induce similar cellular inflammatory gene expressions in cultured proximal renal tubular cells. Nephrol Dial Transplant. 2013; 28: 70-8
PubMed CrossRef
医中誌リンクサービス
27)Motojima M, Hosokawa A, Yamato H, et al. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-κB and free radical in proximal tubular cells. Kidney Int. 2003; 63: 1671-80
PubMed CrossRef
医中誌リンクサービス
28)Shimizu H, Bolati D, Adijiang A, et al. NF-κB plays an important role in indoxyl sulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells. Am J Physiol Cell Physiol. 2011; 301: C1201-12
PubMed CrossRef
医中誌リンクサービス
29)Gelasco AK, Raymond JR. Indoxyl sulfate induces complex redox alterations in mesangial cells. Am J Physiol Renal Physiol. 2006; 290: F1551-8
PubMed
医中誌リンクサービス
30)Palm F, Nangaku M, Fasching A, et al. Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress. Am J Physiol Renal Physiol. 2010; 299: F380-6
PubMed
医中誌リンクサービス
31)Nangaku M, Mimura I, Yamaguchi J, et al. Role of uremic toxins in erythropoiesis-stimulating agent resistance in chronic kidney disease and dialysis patients. J Ren Nutr. 2015; 25; 160-3
PubMed CrossRef
医中誌リンクサービス
32)Watanabe H, Miyamoto Y, Honda D, et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013; 83: 582-92
PubMed CrossRef
医中誌リンクサービス
33)Copple IM. The Keap1-Nrf2 cell defense pathway-a promising therapeutic target? Adv Pharmacol. 2012; 63: 43-79
PubMed
医中誌リンクサービス
34)Saito H. Toxico-pharmacological perspective of the Nrf2-Keap1 defense system against oxidative stress in kidney diseases. Biochem Pharmacol. 2013; 85: 865-72
PubMed CrossRef
医中誌リンクサービス
35)Pergola PE, Raskin P, Toto RD, et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011; 365: 327-36
PubMed CrossRef
医中誌リンクサービス
36)Oh CJ, Kim TY, Choi YK, et al. Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-beta/Smad signaling. PLoS One. 2012; 7: e45870
CrossRef
医中誌リンクサービス
37)de Haan JB. Nrf2 activators as attractive therapeutics for diabetic nephropathy. Diabetes. 2011; 60: 2683-4
PubMed CrossRef
医中誌リンクサービス
38)Rossing P. Diabetic nephropathy: could problems with bardoxolone methyl have been predicted? Nat Rev Nephrol. 2013; 9: 128-30
PubMed CrossRef
医中誌リンクサービス
39)Zoja C, Coma D, Nava V, et al. Analogues of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects. Am J Physiol Renal Physiol. 2013; 304: F808-19
PubMed
医中誌リンクサービス
40)Reisman SA, Chercow GM, Hebbar S, et al. Bardoxolone methyl decreases megalin and activates nrf2 in the kidney. J Am Soc Nephrol. 2012; 23: 1663-73
PubMed CrossRef
医中誌リンクサービス
41)Saito H, Yoshimura M, Saigo C, et al. Hepatic sulfotransferase as a nephropreventing target by suppression of the uremic toxin indoxyl sulfate accumulation in ischemic acute kidney injury. Toxicol Sci. 2014; 141: 206-17
PubMed CrossRef
医中誌リンクサービス
42)Yamamoto S, Zuo Y, Ma J, et al. Oral activated charcoal adsorbent (AST-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein Edeficient mice. Nephrol Dial Transplant. 2011; 26: 2491-7
PubMed CrossRef
医中誌リンクサービス
43)Akizawa T, Asano Y, Morita S, et al. CAP-KD Study Group. Effect of a carbonaceous oral adsorbent on the progression of CKD: a multicenter, randomized, controlled trial. Am J Kidney Dis. 2009; 54: 459-67
PubMed CrossRef
医中誌リンクサービス
44)Niwa T. Role of indoxyl sulfate in the progression of chronic kidney disease and cardiovascular disease: Experimental and clinical effects of oral sorbent AST-120. Ther Apher Dial. 2011; 15: 120-4
医学中央雑誌刊行会  PubMed
医中誌リンクサービス
45)Schulman G, Berl T, Beck GJ, et al. Randomized Placebo-Controlled EPPIC Trials of AST-120 in CKD. J Am Soc Nephrol. 2015; 26: 1732-46
PubMed CrossRef
医中誌リンクサービス
46)Kusumoto M, Kamobayashi H, Sato D, et al. Alleviation of cisplatin-induced acute kidney injury using phytochemical polyphenols is accompanied by reduced accumulation of indoxyl sulfate in rats. Clin Exp Nephrol. 2011; 15: 820-30
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
47)Saigo C, Nomura Y, Yamamoto Y, et al. Meclofenamate elicits a nephropreventing effect in a rat model of ischemic acute kidney injury by suppressing indoxyl sulfate production and restoring renal organic anion transporters. Drug Des Devel Ther. 2014; 8: 1073-82
PubMed
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp