医中誌リンクサービス


文献リスト

1)Choi M, Scholl UI, Yue P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011; 331: 768-72
PubMed CrossRef
医中誌リンクサービス
2)Boulkroun S, Beuschlein F, Rossi GP, et al. Prevalence, clinical, and molecular correlates of KCNJ5 mutations in primary aldosteronism. Hypertension. 2012; 59: 592-8
PubMed CrossRef
医中誌リンクサービス
3)Kitamoto T, Suematsu S, Matsuzawa Y, et al. Comparison of cardiovascular complications in patients with and without KCNJ5 gene mutations harboring aldosterone-producing adenomas. J Atheroscler Thromb. 2015; 22: 191-200
医学中央雑誌刊行会  PubMed CrossRef J-Stage
医中誌リンクサービス
4)Azizan EA, Poulsen H, Tuluc P, et al. Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet. 2013; 45: 1055-60
PubMed CrossRef
医中誌リンクサービス
5)Beuschlein F, Boulkroun S, Osswald A, et al. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension. Nat Genet. 2013; 45: 440-4, 4e1-2
PubMed CrossRef
医中誌リンクサービス
6)Scholl UI, Goh G, Stolting G, et al. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet. 2013; 45: 1050-4
PubMed CrossRef
医中誌リンクサービス
7)Scholl UI, Stolting G, Nelson-Williams C, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. eLife. 2015; 4(e06315)
医中誌リンクサービス
8)Cruz DN, Simon DB, Nelson-Williams C, et al. Mutations in the Na-Cl cotransporter reduce blood pressure in humans. Hypertension. 2001; 37: 1458-64
PubMed CrossRef
医中誌リンクサービス
9)Wall SM, Weinstein AM. Cortical distal nephron Cl(-) transport in volume homeostasis and blood pressure regulation. Am J Physiol Renal Physiol. 2013; 305: F427-38
PubMed
医中誌リンクサービス
10)Hou J, Renigunta A, Yang J, et al. Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci U S A. 2010; 107: 18010-5
PubMed CrossRef
医中誌リンクサービス
11)Royaux IE, Wall SM, Karniski LP, et al. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A. 2001; 98: 4221-6
PubMed CrossRef
医中誌リンクサービス
12)Jacques T, Picard N, Miller RL, et al. Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol. 2013; 24: 1104-13
PubMed CrossRef
医中誌リンクサービス
13)Soleimani M, Barone S, Xu J, et al. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure. Proc Natl Acad Sci U S A. 2012; 109: 13368-73
PubMed CrossRef
医中誌リンクサービス
14)Kurtz TW, Al-Bander HA, Morris RC Jr. “Salt-sensitive” essential hypertension in men. Is the sodium ion alone important? N Engl J Med. 1987; 317: 1043-8
PubMed CrossRef
医中誌リンクサービス
15)Luke RG, Galla JH. It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol. 2012; 23: 204-7
PubMed CrossRef
医中誌リンクサービス
16)Terada Y, Knepper MA. Thiazide-sensitive NaCl absorption in rat cortical collecting duct. Am J Physiol. 1990; 259(3 Pt 2): F519-28
PubMed
医中誌リンクサービス
17)Leviel F, Hubner CA, Houillier P, et al. The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest. 2010; 120: 1627-35
PubMed CrossRef
医中誌リンクサービス
18)Karet FE, Finberg KE, Nelson RD, et al. Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet. 1999; 21: 84-90
PubMed CrossRef
医中誌リンクサービス
19)Finberg KE, Wagner CA, Bailey MA, et al. The B1-subunit of the H(+) ATPase is required for maximal urinary acidification. Proc Natl Acad Sci U S A. 2005; 102: 13616-21
PubMed CrossRef
医中誌リンクサービス
20)Gueutin V, Vallet M, et al. Renal beta-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest. 2013; 123: 4219-31
PubMed CrossRef
医中誌リンクサービス
21)Hollenberg AN. Metabolic health and nuclear-receptor sensitivity. N Engl J Med. 2012; 366: 1345-7
PubMed CrossRef
医中誌リンクサービス
22)Shibata S, Nagase M, Yoshida S, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat Med. 2008; 14: 1370-6
PubMed CrossRef
医中誌リンクサービス
23)Shibata S, Mu S, Kawarazaki H, et al. Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Invest. 2011; 121: 3233-43
PubMed CrossRef
医中誌リンクサービス
24)Choi JH, Banks AS, Estall JL, et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature. 2010; 466: 451-6
PubMed CrossRef
医中誌リンクサービス
25)Shibata S, Rinehart J, Zhang J, et al. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab. 2013; 18: 660-71
PubMed CrossRef
医中誌リンクサービス
26)Ortlund EA, Bridgham JT, Redinbo MR, et al. Crystal structure of an ancient protein: evolution by conformational epistasis. Science. 2007; 317: 1544-8
PubMed CrossRef
医中誌リンクサービス
27)Terker AS, Zhang C, McCormick JA, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015; 21: 39-50
PubMed CrossRef
医中誌リンクサービス
28)Kahle KT, Ring AM, Lifton RP. Molecular physiology of the WNK kinases. Annu Rev Physiol. 2008; 70: 329-55
PubMed CrossRef
医中誌リンクサービス
29)Ohta A, Schumacher FR, Mehellou Y, et al. The CUL3-KLHL3 E3 ligase complex mutated in Gordon’s hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J. 2013; 451: 111-22
PubMed CrossRef
医中誌リンクサービス
30)Wakabayashi M, Mori T, Isobe K, et al. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep. 2013; 3: 858-68
PubMed
医中誌リンクサービス
31)Shibata S, Zhang J, Puthumana J, et al. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci U S A. 2013; 110: 7838-43
PubMed CrossRef
医中誌リンクサービス
32)Shibata S, Arroyo JP, Castaneda-Bueno M, et al. Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Proc Natl Acad Sci U S A. 2014; 111: 15556-61
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp