医中誌リンクサービス


文献リスト

1)Gordon RD. Syndrome of hypertension and hyperkalemia with normal glomerular filtration rate. Hypertension. 1986; 8: 93-102
PubMed CrossRef
医中誌リンクサービス
2)Mayan H, Attar-Herzberg D, Shaharabany M, et al. Increased urinary Na-Cl cotransporter protein in familial hyperkalaemia and hypertension. Nephrol Dial Transplant. 2008; 23: 492-6
PubMed
医中誌リンクサービス
3)Wilson FH, Disse-Nicodeme S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001; 293: 1107-12
PubMed CrossRef
医中誌リンクサービス
4)Xu B, English JM, Wilsbacher JL, et al. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem. 2000; 275: 16795-801
PubMed CrossRef
医中誌リンクサービス
5)Yang SS, Morimoto T, Rai T, et al. Molecular pathogenesis of pseudohypoaldosteronism type II: generation and analysis of a Wnk4(D561A/+) knockin mouse model. Cell Metab. 2007; 5: 331-44
PubMed CrossRef
医中誌リンクサービス
6)Moriguchi T, Urushiyama S, Hisamoto N, et al. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1. J Biol Chem. 2005; 280: 42685-93
PubMed CrossRef
医中誌リンクサービス
7)Vitari AC, Deak M, Morrice NA, et al. The WNK1 and WNK4 protein kinases that are mutated in Gordon’s hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J. 2005; 391: 17-24
PubMed CrossRef
医中誌リンクサービス
8)Hossain Khan MZ, Sohara E, Ohta A, et al. Phosphorylation of Na-Cl cotransporter by OSR1 and SPAK kinases regulates its ubiquitination. Biochem Biophys Res Commun. 2012; 425: 456-61
PubMed CrossRef
医中誌リンクサービス
9)Chiga M, Rai T, Yang SS, et al. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int. 2008; 74: 1403-9
PubMed CrossRef
医中誌リンクサービス
10)San-Cristobal P, Pacheco-Alvarez D, Richardson C, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci U S A. 2009; 106: 4384-9
PubMed CrossRef
医中誌リンクサービス
11)Mutig K, Saritas T, Uchida S, et al. Short-term stimulation of the thiazide-sensitive Na+-Cl- cotransporter by vasopressin involves phosphorylation and membrane translocation. Am J Physiol Renal Physiol. 2010; 298: F502-9
PubMed
医中誌リンクサービス
12)Wright JT Jr, Harris-Haywood S, Pressel S, et al. Clinical outcomes by race in hypertensive patients with and without the metabolic syndrome: Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Arch Intern Med. 2008; 168: 207-17
PubMed CrossRef
医中誌リンクサービス
13)Weber MA, Jamerson K, Bakris GL, et al. Effects of body size and hypertension treatments on cardiovascular event rates: subanalysis of the ACCOMPLISH randomised controlled trial. Lancet. 2012; 6736: 61343-9
PubMed
医中誌リンクサービス
14)Sohara E, Rai T, Yang SS, et al. Acute insulin stimulation induces phosphorylation of the Na-Cl cotransporter in cultured distal mpkDCT cells and mouse kidney. PLoS One. 2011; 6: e24277
CrossRef
医中誌リンクサービス
15)Nishida H, Sohara E, Nomura N, et al. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice. Hypertension. 2012; 60: 981-90
PubMed CrossRef
医中誌リンクサービス
16)Komers R, Rogers S, Oyama TT, et al. Enhanced phosphorylation of Na(+)-Cl- co-transporter in experimental metabolic syndrome: role of insulin. Clin Sci (Lond). 2012; 123: 635-47
PubMed CrossRef
医中誌リンクサービス
17)Meyer JW, Flagella M, Sutliff RL, et al. Decreased blood pressure and vascular smooth muscle tone in mice lacking basolateral Na(+)-K(+)-2Cl(-) cotransporter. Am J Physiol Heart Circ Physiol. 2002; 283: H1846-55
PubMed CrossRef
医中誌リンクサービス
18)Yang SS, Lo YF, Wu CC, et al. SPAK-knockout mice manifest Gitelman syndrome and impaired vasoconstriction. J Am Soc Nephrol. 2010; 21: 1868-77
PubMed CrossRef
医中誌リンクサービス
19)Susa K, Kita S, Iwamoto T, et al. Effect of heterozygous deletion of WNK1 on the WNK-OSR1/ SPAK-NCC/NKCC1/NKCC2 signal cascade in the kidney and blood vessels. Clin Exp Nephrol. 2012; 16: 530-8
医学中央雑誌刊行会  PubMed CrossRef
医中誌リンクサービス
20)Bergaya S, Faure S, Baudrie V, et al. WNK1 regulates vasoconstriction and blood pressure response to alpha 1-adrenergic stimulation in mice. Hypertension. 2011; 58: 439-45
PubMed CrossRef
医中誌リンクサービス
21)Zeniya M, Sohara E, Kita S, et al. Dietary salt intake regulates WNK3-SPAK-NKCC1 phosphorylation cascade in mouse aorta through angiotensin II. Hypertension. 2013; 62: 872-8
PubMed CrossRef
医中誌リンクサービス
22)Boyden LM, Choi M, Choate KA, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature. 2012; 482: 98-102
PubMed CrossRef
医中誌リンクサービス
23)Louis-Dit-Picard H, Barc J, Trujillano D, et al. KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet. 2012; 44: 456-60
PubMed CrossRef
医中誌リンクサービス
24)Ohta A, Schumacher FR, Mehellou Y, et al. The CUL3-KLHL3 E3 ligase complex mutated in Gordon’s hypertension syndrome interacts with and ubiquitylates WNK isoforms: disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J. 2013; 451: 111-22
PubMed CrossRef
医中誌リンクサービス
25)Wakabayashi M, Mori T, Isobe K, et al. Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep. 2013; 3: 858-68
PubMed
医中誌リンクサービス
26)Shibata S, Zhang J, Puthumana J, et al. Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci U S A. 2013; 110: 7838-43
PubMed CrossRef
医中誌リンクサービス
27)Susa K, Sohara E, Rai T, et al. Impaired degradation of WNK1 and WNK4 kinases causes PHAⅡ in mutant KLHL3 knock-in mice. Hum Mol Genet. 2014; 23: 5052-60
PubMed CrossRef
医中誌リンクサービス
28)Schumacher FR, Siew K, Zhang J, et al. Characterisation of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med. 2015; 7: 1285-306
PubMed CrossRef
医中誌リンクサービス
29)Ibeawuchi SR, Agbor LN, Quelle FW, et al. Hypertension-causing mutations in cullin3 protein impair rhoA protein ubiquitination and augment the association with substrate adaptors. J Biol Chem. 2015; 290: 19208-17
PubMed CrossRef
医中誌リンクサービス
30)Araki Y, Rai T, Sohara E, et al. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene. Biol Open. 2015 [Epub ahead of print]
医中誌リンクサービス
31)Wang Y, O’Connell JR, McArdle PF, et al. Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A. 2009; 106: 226-31
PubMed CrossRef
医中誌リンクサービス
32)Mandai S, Mori T, Sohara E, et al. Generation of hypertension-associated STK39 polymorphism knockin cell lines with the clustered regularly interspaced short palindromic repeats/Cas9 system. Hypertension. 2015 [Epub ahead of print]
PubMed
医中誌リンクサービス
33)Shibata S, Arroyo JP, Castaneda-Bueno M, et al. Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Proc Natl Acad Sci U S A. 2014; 111: 15556-61
PubMed CrossRef
医中誌リンクサービス
34)Yoshizaki Y, Mori Y, Tsuzaki Y, et al. Impaired degradation of WNK by Akt and PKA phosphorylation of KLHL3. Biochem Biophys Res Commun. 2015; 167: 229-34
医中誌リンクサービス
35)Zeniya M, Morimoto N, Takahashi D, et al. Kelch-like protein 2 mediates angiotensin II-with no lysine 3 signaling in the regulation of vascular tonus. J Am Soc Nephrol. 2015; 26: 2129-38
PubMed CrossRef
医中誌リンクサービス
36)Mori T, Kikuchi E, Watanabe Y, et al. Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy. Biochem J. 2013; 455: 339-45
PubMed CrossRef
医中誌リンクサービス
37)Kikuchi E, Mori T, Zeniya M, et al. Discovery of novel SPAK inhibitors that block WNK kinase signaling to cation chloride transporters. J Am Soc Nephrol. 2014; 26: 1525-36
PubMed
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp