医中誌リンクサービス


文献リスト

1) Schwartz MW, Woods SC, Porte D Jr, et al. Central nervous system control of food intake. Nature. 2000; 404: 661-71
PubMed
医中誌リンクサービス
2) Tanaka T, Masuzaki H, Yasue S, et al. Central melanocortin signaling restores skeletal muscle AMP-activated protein kinase phosphorylation in mice fed a high-fat diet. Cell Metab. 2007; 5: 395-402
PubMed CrossRef
医中誌リンクサービス
3) Balthasar N, Dalgaard LT, Lee CE, et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell. 2005; 123: 493-505
PubMed CrossRef
医中誌リンクサービス
4) Toda C, Shiuchi T, Lee S, et al. Distinct effects of leptin and a melanocortin receptor agonist injected into medial hypothalamic nuclei on glucose uptake in peripheral tissues. Diabetes. 2009; 58: 2757-65
PubMed CrossRef
医中誌リンクサービス
5) Shiuchi T, Haque MS, Okamoto S, et al. Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 2009; 10: 466-80
PubMed CrossRef
医中誌リンクサービス
6) Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008; 70: 537-56
PubMed CrossRef
医中誌リンクサービス
7) Hill JW, Williams KW, Ye C, et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest. 2008; 118: 1796-805
PubMed CrossRef
医中誌リンクサービス
8) Al-Qassab H, Smith MA, Irvine EE, et al. Dominant role of the p110beta isoform of PI3K over p110alpha in energy homeostasis regulation by POMC and AgRP neurons. Cell Metab. 2009; 10: 343-54
PubMed CrossRef
医中誌リンクサービス
9) Xu Y, Hill JW, Fukuda M, et al. PI3K signaling in the ventromedial hypothalamic nucleus is required for normal energy homeostasis. Cell Metab. 2010; 12: 88-95
PubMed CrossRef
医中誌リンクサービス
10) Kitamura T, Feng Y, Kitamura YI, et al. Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med. 2006; 12: 534-40
PubMed CrossRef
医中誌リンクサービス
11) Fukuda M, Jones JE, Olson D, et al. Monitoring FoxO1 localization in chemically identified neurons. J Neurosci. 2008; 28: 13640-8
PubMed CrossRef
医中誌リンクサービス
12) Plum L, Lin HV, Dutia R, et al. The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat Med. 2009; 15: 1195-201
PubMed CrossRef
医中誌リンクサービス
13) Banno R, Zimmer D, De Jonghe BC, et al. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest. 2010; 120: 720-34
PubMed CrossRef
医中誌リンクサービス
14) Roth JD, Roland BL, Cole RL, et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc Natl Natl Acad Sci U S A. 2008; 105: 7257-62
医中誌リンクサービス
15) Minokoshi Y, Alquier T, Furukawa N, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature. 2004; 428: 569-74
PubMed CrossRef
医中誌リンクサービス
16) Lam TK, Pocai A, Gutierrez-Juarez R, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005; 11: 320-7
PubMed CrossRef
医中誌リンクサービス
17) Claret M, Smith MA, Batterham RL, et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J Clin Invest. 2007; 117: 2325-36
PubMed CrossRef
医中誌リンクサービス
18) Wolfgang MJ, Cha SH, Millington DS, et al. Brain-specific carnitine palmitoyl-transferase-1c: role in CNS fatty acid metabolism, food intake, and body weight. J Neurochem. 2008; 105: 1550-9
PubMed CrossRef
医中誌リンクサービス
19) López M, Lage R, Saha AK, et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 2008; 7: 389-99
PubMed CrossRef
医中誌リンクサービス
20) Spanswick D, Smith MA, Mirshamsi S, et al. Insulin activates ATP-sensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci. 2000; 3: 757-8
PubMed CrossRef
医中誌リンクサービス
21) Miki T, Liss B, Minami K, et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci. 2001; 4: 507-12
PubMed
医中誌リンクサービス
22) Pocai A, Lam TK, Gutierrez-Juarez R, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005; 434: 1026-31
PubMed CrossRef
医中誌リンクサービス
23) Leloup C, Magnan C, Benani A, et al. Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes. 2006; 55: 2084-90
PubMed CrossRef
医中誌リンクサービス
24) Le Foll C, Irani BG, Magnan C, et al. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol. 2009; 297: R655-64
医中誌リンクサービス
25) Parton LE, Ye CP, Coppari R, et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature. 2007; 449: 228-32
PubMed CrossRef
医中誌リンクサービス
26) Andrews ZB, Liu ZW, Walllingford N, et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature. 2008; 454: 846-51
PubMed CrossRef
医中誌リンクサービス
27) Cota D, Proulx K, Smith KA, et al. Hypothalamic mTOR signaling regulates food intake. Science. 2006; 312: 927-30
PubMed CrossRef
医中誌リンクサービス
28) Blouet C, Jo YH, Li X, et al. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. J Neurosci. 2009; 29: 8302-11
PubMed CrossRef
医中誌リンクサービス
29) Ropelle ER, Pauli JR, Fernandes MF, et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes. 2008; 57: 594-605
PubMed CrossRef
医中誌リンクサービス
30) Cantó C, Gerhart-Hines Z, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009; 458: 1056-60
PubMed CrossRef
医中誌リンクサービス
31) Cakir I, Perello M, Lansari O, et al. Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS One. 2009; 4: e8322
PubMed CrossRef
医中誌リンクサービス
32) Sasaki T, Kim HJ, Kobayashi M, et al. Induction of hypothalamic Sirt1 leads to cessation of feeding via agouti-related peptide. Endocrinology. 2010; 151: 2556-66
PubMed CrossRef
医中誌リンクサービス
33) Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006; 444: 860-7
PubMed CrossRef
医中誌リンクサービス
34) Thaler JP, Choi SJ, Schwartz MW, et al. Hypothalamic inflammation and energy homeostasis: resolving the paradox. Front Neuroendocrinol. 2010; 31: 79-84
PubMed CrossRef
医中誌リンクサービス
35) Zhang X, Zhang G, Zhang H, et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008; 135: 61-73
PubMed CrossRef
医中誌リンクサービス
36) Ozcan L, Ergin AS, Lu A, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009; 9: 35-51
PubMed CrossRef
医中誌リンクサービス
37) Milanski M, Degasperi G, Coope A, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009; 29: 359-70
PubMed CrossRef
医中誌リンクサービス
38) Kleinridders A, Schenten D, Könner AC, et al. MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab. 2009; 10: 249-59
PubMed CrossRef
医中誌リンクサービス
39) Winnay JN, Boucher J, Mori MA, et al. A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box-binding protein-1 to modulate the unfolded protein response. Nat Med. 2010; 16: 438-45
PubMed CrossRef
医中誌リンクサービス
40) Park SW, Zhou Y, Lee J, et al. The regulatory subunits of PI3K, p85alpha and p85beta, interact with XBP-1 and increase its nuclear translocation. Nat Med. 2010; 16: 429-37
PubMed CrossRef
医中誌リンクサービス
41) Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005; 308: 1043-5
PubMed CrossRef
医中誌リンクサービス
42) Williams DL, Schwartz MW. Out of synch: Clock mutation causes obesity in mice. Cell Metab. 2005; 1: 355-6
PubMed CrossRef
医中誌リンクサービス
43) Kennaway DJ, Owens JA, Voultsios A, et al. Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues. Am J Physiol. 2007; 293: R1528-37
医中誌リンクサービス
44) Fuller PM, Lu J, Saper CB. Differential rescue of light- and food-entrainable circadian rhythms. Science. 2008; 320: 1074-7
PubMed CrossRef
医中誌リンクサービス
45) Froy O. Metabolism and circadian rhythms--implications for obesity. Endocr Rev. 2010; 31: 1-24
PubMed CrossRef
医中誌リンクサービス
46) Pendergast JS, Nakamura W, Friday RC, et al. Robust food anticipatory activity in BMAL1-deficient mice. PLoS One. 2009; 4: e4860
PubMed CrossRef
医中誌リンクサービス
47) Storch KF, Weitz CJ. Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci U S A. 2009; 106: 6808-13
PubMed CrossRef
医中誌リンクサービス
48) Imai J, Katagiri H, Yamada T, et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science. 2008; 322: 1250-4
PubMed CrossRef
医中誌リンクサービス
49) Wang PY, Caspi L, Lam CK, et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature. 2008; 452: 1012-6
PubMed CrossRef
医中誌リンクサービス
50) Lam TK, Gutierrez-Juarez R, et al. Brain glucose metabolism controls the hepatic secretion of triglyceride-rich lipoproteins. Nat Med. 2007; 13: 171-80
PubMed CrossRef
医中誌リンクサービス
51) Gillum MP, Zhang D, Zhang XM, et al. N-acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell. 2008; 135: 813-24
PubMed CrossRef
医中誌リンクサービス


NPO医学中央雑誌刊行会
https://www.jamas.or.jp/
info@jamas.or.jp